CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 417-424.DOI: 10.11949/j.issn.0438-1157.20180556

• Process safety • Previous Articles    

ARC thermal inertia correction method based on C80 data merging

Jiong DING(),Qi CHEN,Qiyue XU,Suijun YANG,Shuliang YE()   

  1. Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2018-05-25 Revised:2018-10-27 Online:2019-01-05 Published:2019-01-05
  • Contact: Shuliang YE

融合C80数据的绝热加速量热法热惯量因子修正

丁炯(),陈琪,许启跃,杨遂军,叶树亮()   

  1. 中国计量大学工业与商贸计量技术研究所,浙江 杭州 310018
  • 通讯作者: 叶树亮
  • 作者简介:丁炯(1986—),男,博士,讲师,<email>dingjiong@cjlu.edu.cn</email>|叶树亮(1973—),男,博士,教授,<email>itmt_paper@126.com</email>
  • 基金资助:
    浙江省自然科学基金项目(LQ15F030003,LY17F010011);浙江省基础公益研究计划项目(LGF18B030001);浙江省仪器科学与技术重中之重学科人才培育计划项目(JL150501)

Abstract:

Due to the limit of the principle of accelerating rate calorimeter, thermal inertia factor correction is necessary for kinetics computation. However, the existing correction methods are contrary to the fact that the thermal inertia factor is shifty during the reaction process. Actually, the specific heat of the reactant and the efficiency of temperature tracking change with the reaction process. This leads to the kinetic computation errors. In response to these deficiencies, a method is proposed that the dynamical thermal inertia factor correction based on differential scanning calorimeter (C80) and accelerating rate calorimeter (ARC) data merging. The details of the method are as followed. Firstly, according to the Friedman method, the non-model kinetics parameters are obtained with the C80 data. Secondly, the product of the heat capacity and the equivalent thermal inertia factor is got through using the non-model kinetics parameters to solve the accelerating rate calorimeter data. Third, with the replacement of constant thermal inertia factor and the specific heat by the product, the kinetics results of ARC data are calculated. To verify the validity of the proposed method, the experiments are performed by using di-tert-butyl peroxide (DTBP) and cumene hydroperoxide (CHP). The results show that the proposed methods can avoid the influence of the dynamical thermal inertia factor in kinetic computation. It is worth popularizing in the thermal safety evaluation of chemical process.

Key words: reaction kinetic, safety, kinetic modeling, thermal inertia factor, accelerating rate calorimeter, differential scanning calorimeter

摘要:

受限于仪器原理,绝热加速量热法数据分析需进行热惯量因子修正。然而,现有的修正方法均违背由反应物比热及炉体温度动态追踪效果变化等引起热惯量因子动态变化的事实,导致动力学参数求取存在偏差。针对上述不足,提出一种基于C80与绝热加速量热数据联用的绝热加速量热热惯量因子修正及动力学计算方法。具体步骤如下:基于Friedman法分析C80数据获取无模型动力学参数,将其代入绝热数据求解反应体系比热容与等效热惯量因子乘积,并在绝热平衡方程中由上述乘积替代恒定热惯量因子及比热实现动力学计算。以过氧化二叔丁基(DTBP)和过氧化氢异丙苯(CHP)为实验对象进行实验验证。结果表明,基于两种量热模式联用的热惯量因子修正方法避免了热惯量动态变化对动力学分析的影响,从而获得更加准确的动力学参数。

关键词: 反应动力学, 安全, 动力学模型, 热惯量因子, 绝热加速量热, 差示扫描量热

CLC Number: