[1] |
XUAN W, ZHU C, LIU Y, et al. Mesoporous metal-organic framework materials[J]. Chemical Society Reviews, 2012, 41(5):1677-1695.
|
[2] |
LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759):276-279.
|
[3] |
KONDO M, YOSHITOMI T, SEKI K, et al. Three-dimensional framework with channeling cavities for small molecules:{M2(4,4'-bpy)3(NO3)4·xH2O}n(M=Co, Ni, Zn)[J]. Angewandte Chemie International Edition, 1997, 36(16):1725-1727.
|
[4] |
KRISTINA K, THERESA O, YUNXIA Y, et al. Methane storage in metal organic frameworks[J]. Journal of Materials Chemistry, 2012, 22:16698-16708.
|
[5] |
YABING H, WEI Z, GUODONG Q, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43:5657-5678.
|
[6] |
JARAD A M, MIKE V, JEFFREY R L. Evaluating metal-organic frameworks for natural gas storage[J]. Chemical Science, 2014, 5:32-51.
|
[7] |
WEI Z. Methane storage in porous metal-organic frameworks:current records and future perspectives[J]. The Chemical Record, 2010, 10:200-204.
|
[8] |
冯英子. 几种金属有机骨架材料的合成及其吸附性能的研究[D]. 广州:华南理工大学, 2010. FENG Y Z. Study on the synthesis and adsorption properties of several metallic organic framework materials[D]. Guangzhou:South China University of Technology, 2010.
|
[9] |
吴华伟. 微孔材料的甲烷吸附研究[D]. 太原:太原理工大学, 2009. WU H W. Study on methane adsorption of microporous materials[D]. Taiyuan:Taiyuan University of Technology, 2009.
|
[10] |
周丽姣. MOF-5的合成及Ru(Pd)/AC掺杂研究[D]. 长沙:中南大学, 2012. ZHOU L J. Study on synthesis of MOF-5 and Ru(Pd)/AC doping[D]. Changshai:Central South University, 2012.
|
[11] |
王明雪. 金属有机骨架化合物MOF-5的合成及其耐水性能研究[D]. 长沙:中南大学, 2014. WANG M X. Study on the synthesis and water resistance of metal organic skeleton compound MOF-5[D]. Changshai:Central South University, 2014.
|
[12] |
BAICHUAN S, SIBNATH K, ANUTOSH C. Study of HKUST (copper benzene-1,3,5-tricarboxylate, Cu-BTC MOF)-1 metal organic frameworks for CH4 adsorption:an experimental investigation with GCMC (grand canonical Monte-Carlo) simulation[J]. Energy, 2014, 76:419-427.
|
[13] |
YANG P, VAIVA K, IBRAHIM E, et al. Methane storage in metal-organic frameworks:current records, surprise findings, and challenges[J]. Journal of the American Chemical Society, 2013, 135:11887-11894.
|
[14] |
JUNCONG J, HIROYASU F, YUEBIAO Z, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society, 2016, 138:10244-10251.
|
[15] |
HOW W B, ANUTOSH C, SIBNATH K. Evaluation of CH4 and CO2 adsorption on HKUST-1 and MIL-101(Cr) MOFs employing Monte Carlo simulation and comparison with experimental data[J]. Applied Thermal Engineering, 2017, 110:891-900.
|
[16] |
PRAJWAL B P, AYAPPA K G. Evaluating methane storage targets:from powder samples to onboard storage systems[J]. Adsorption, 2014, 20:769-776.
|
[17] |
JUERGEN G, IRENA S, DIRK W, et al. Methane storage mechanism in the metal-organic framework Cu3(btc)2:an in situ neutron diffraction study[J]. Microporous and Mesoporous Materials, 2010, 136:50-58.
|
[18] |
ZHIYONG G, HUI W, GADIPELLI S, et al. A metal-organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature[J]. Angewandte Chemie International Edition, 2011, 50:3178-3181.
|
[19] |
阳庆元, 刘大欢, 仲崇立. 金属有机骨架材料的计算化学研究[J]. 化工学报, 2009, 60(4):805-819. YANG Q Y, LIU D H, ZHONG C L. Computational chemistry of metallic organic framework materials[J]. CIESC Journal, 2009, 60(4):805-819.
|
[20] |
WEI M, DAHUAN L, QINGYUAN Y, et al.Computational study of the effect of organic linkers on natural gas upgrading in metal-organic frameworks[J]. Microporous and Mesoporous Materials, 2010, 130:76-82.
|
[21] |
JIA F, YUN T, JIANZHONG W. Classical density functional theory for methane adsorption in metal-organic framework materials[J]. AIChE Journal, 2015, 61(9):3012-3021.
|
[22] |
仲崇立, 刘大欢, 阳庆元. 金属-有机骨架材料的构效关系及设计[M]. 北京:科学出版社, 2013:104-105. ZHONG C L, LIU D H, YANG Q Y. Structure-Activity Relationship and Design of Metal-Organic Framework Materials[M]. Beijing:Science Press, 2013:104-105.
|
[23] |
张伊, 顾奕奕, 陈云琳, 等. 掺杂金属离子对MOF-5吸附甲烷分子的影响[J]. 化工新型材料, 2015, 43(2):93-96. ZHANG Y, GU Y Y, CHEN Y L, et al. Influence of doped metal ions on MOF-5 adsorption of methane molecules[J]. New Chemical Materials, 2015, 43(2):93-96.
|
[24] |
朱晨明, 王保登, 张中正, 等. 金属-有机骨架复合材料的制备及其二氧化碳吸附性能[J]. 化工进展, 2016, 35(9):2875-2884. ZHU C M, WANG B D, ZHANG Z Z, et al. Preparation of metal-organic matrix composites and their carbon dioxide adsorption properties[J]. Chemical Industry and Engineering Progress, 2016, 35(9):2875-2884.
|
[25] |
SEO Y K, AHREUM K, JUNG W Y, et al. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake[J]. Chemical Engineering Journal, 2018, 335:94-100.
|
[26] |
BARIN G, KRUNGLEVICIUTE V, GUTOV O, et al. Defect creation by linker fragmentation in metal-organic frameworks and its effects on gas uptake properties[J]. Inorganic Chemistry, 2014, 53(13):6914-6919.
|
[27] |
FANG Z L, BUEKEN B, DEVOS D E, et al. Defect-engineered metal-organic frameworks[J]. Angewandte Chemie International Edition, 2015, 54:7234-7254.
|
[28] |
LI B, WEN H M, ZHOU W, et al. Porous metal-organic frameworks:promising materials for methane storage[J]. Chemistry, 2016, 1:557-580.
|
[29] |
ZHANG W, KAUER M, GUO P, et al. Impact of synthesis parameters on the formation of defects in HKUST-1[J]. European Journal of Inorganic Chemistry, 2017, 5:925-931.
|
[30] |
PARK J, WANG Z Y, SUN L B, et al. Introduction of functionalized mesopores to metal-organic frameworks via metal-ligand-fragment coassembly[J]. Journal of the American Chemical Society, 2012, 134(49):20110-20116.
|