1 |
BrockbankK G, SongY C. Morphological analyses of ice-free and frozen cryopreserved heart valve explants.[J]. Journal of Heart Valve Disease, 2004, 13(2): 297.
|
2 |
TaylorM J, SongY C, BrockbankK G M. Vitrification in Tissue Preservation: New Developments[M]. CRC Press , 2004.
|
3 |
FahyG M, MacfarlaneD R, AngellC A, et al.Vitrification as an approach to cryopreservation[J]. Cryobiology, 1984, 21(4): 407-426.
|
4 |
JiaoA, HanX, CritserJ K, et al. Numerical investigations of transient heat transfer characteristics and vitrification tendencies in ultra-fast cell cooling processes[J]. Cryobiology, 2006, 52(3): 386.
|
5 |
FahyG M, LevyD I, AliS E. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions[J]. Cryobiology, 1987, 24(3): 196.
|
6 |
FowlerA J, TonerM. Prevention of hemolysis in rapidly frozen erythrocytes by using a laser pulse[J]. Annals of the New York Academy of Sciences, 1998, 858(1): 245.
|
7 |
GoetzA, GoetzS S. Death by devitrification in yeast cells[J]. Biodynamica, 1938, 2(43): 1-8.
|
8 |
BahariL, BraslavskyI. The effect of antifreeze proteins on vitrification–devitrificartion processes in a micro-scale view[J]. Cryobiology, 2013, 67(3): 436-437.
|
9 |
LeeH J, ElmoazzenH, WrightD, et al. Ultra-rapid vitrification of mouse oocytes in low cryoprotectant concentrations[J]. Reproductive Biomedicine Online, 2010, 20(2): 201-208.
|
10 |
YavinS, AravA. Measurement of essential physical properties of vitrification solutions.[J]. Theriogenology, 2007, 67(1): 81-89.
|
11 |
FahyG M, WowkB, WuJ, et al. Improved vitrification solutions based on the predictability of vitrification solution toxicity.[J]. Cryobiology, 2004, 48(1): 22.
|
12 |
SongY C, AnY H, KangQ K, et al. Vitreous preservation of articular cartilage grafts[J]. Journal of Investigative Surgery the Official Journal of the Academy of Surgical Research, 2004, 17(2): 65-70.
|
13 |
BaicuS, TaylorM J, ChenZ, et al. Cryopreservation of carotid artery segments via vitrification subject to marginal thermal conditions: correlation of freezing visualization with functional recovery[J]. Cryobiology, 2008, 57(1): 1-8.
|
14 |
SongY C, KhirabadiB S, LightfootF, et al. Vitreous cryopreservation maintains the function of vascular grafts[J]. Nature Biotechnology, 2000, 18(3): 296.
|
15 |
RabinY, BellE. Thermal expansion measurements of cryoprotective agents(Ⅱ): Measurements of DP6 and VS55, and comparison with DMSO[J]. Cryobiology, 2003, 46(3): 254-263.
|
16 |
ZhangW, YangG, ZhangA, et al. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification[J]. Biomedical Microdevices, 2010, 12(1): 89-96.
|
17 |
FowlerA, TonerM. Cryo-injury and biopreservation[J]. Annals of the New York Academy of Sciences, 2005, 1066(1): 119.
|
18 |
张换成, 胥义. 深低温保存生物材料快速复温方法的研究进展[J]. 中国医学物理学杂志, 2015, 32(1): 144-148.
|
|
ZhangH C, XuY. Study on rapid thawing methods of cryopreserved biological materials[J]. Chinese Journal of Medical Physics, 2015, 32(1): 144-148.
|
19 |
于红梅, 胥义, 柳珂, 等. 磁纳米粒子对Vs55溶液反玻璃化等温结晶行为的影响[J]. 化工学报, 2017, 68(3): 1262-1268.
|
|
YuH M, XuY, LiuK, et al. Effect of magnetic nanoparticles on isothermal crystallization behaviors of devitrified Vs55[J]. CIESC Journal, 2017, 68(3): 1262-1268.
|
20 |
刘忠范.氧化石墨烯控制冰晶生长并应用于低温细胞保存[J]. 物理化学学报, 2017, 33(2): 263-263.
|
|
liuZ F. Graphene oxide controls ice crystal growth and is applied to cryogenic cell preservation[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 263-263.
|
21 |
GengH, LiuX, ShiG, et al. Graphene oxide restricts growth and recrystallization of ice crystals[J]. Angewandte Chemie International Edition, 2017, 56(4): 997-1001.
|
22 |
华泽钊. 低温生物医学技术[M]. 北京: 科学出版社, 1994.
|
|
HuaZ Z. Cryobiomedical Technology[M]. Beijing: Science Press, 1994.
|
23 |
ZhengY, SuC, LuJ, et al. Room-temperature ice growth on graphite seeded by nano-graphene oxide[J]. Angewandte Chemie International Edition, 2013, 52(33): 8708.
|
24 |
徐海峰, 刘宝林, 高志新. 细胞及组织的玻璃化保存研究进展[J]. 低温工程, 2010,(5): 59-64.
|
|
XuH F, LiuB L, GaoZ X. Review of cryopreservation for animal tissues and cells by vitrification[J]. Cryogenics, 2010,(5): 59-64.
|
25 |
ManuchehrabadiN, GaoZ, ZhangJ, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles[J]. Science Translational Medicine, 2017, 9(379): eaah4586.
|
26 |
WhaleT F, RosillolopezM, MurrayB J, et al. Ice nucleation properties of oxidized carbon nanomaterials[J]. Journal of Physical Chemistry Letters, 2015, 6(15): 3012-3016.
|
27 |
DreyerD R, ParkS, BielawskiC W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39(15): 5288.
|
28 |
MkhoyanK A, ContrymanA W, SilcoxJ, et al. Atomic and electronic structure of graphene-oxide[J]. Nano Letters, 2009, 16(S2): 1058-1063.
|
29 |
EricksonK, ErniR, LeeZ, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472.
|
30 |
YangJ, ShiG, TuY, et al. High correlation between oxidation loci on graphene oxide[J]. Angewandte Chemie, 2014, 53(38): 10190-4.
|
31 |
SzabóT, TombáczE, IllésE, et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon, 2006, 44(3): 537-545.
|