[1] |
PEKALA R W, MAYER S T, POCO J F, et al. Structure and performance of carbon aerogel electrodes[C]//MRS Proceedings, 1994, 349:79.
|
[2] |
LOY D A, JAMISON G M, BAUGHER B M, et al. Alkylene-bridged polysilsesquioxane aerogels:highly porous hybrid organic-inorganic materials[J]. Journal of Non-Crystalline Solids, 1995, 186(2):44-53.
|
[3] |
DESPETIS F, BARRAL K, KOCON L, et al. Effect of aging on mechanical properties of resorcinol-formaldehyde gels[J]. Journal of Sol-Gel Science and Technology, 2000, 19(1/2/3):829-831.
|
[4] |
PEREZ-CABALLERO F, PEIKOLAINEN A L, KOEL M. Preparation of nanostructured carbon materials/nanostruktuurse susinikaerogeeli valmistamine[J]. Proceedings of the Estonian Academy of Sciences, 2008, 57(57-1):48-53.
|
[5] |
ROJAS-CERVANTES M L. Some strategies to lower the production cost of carbon gels[J]. Journal of Materials Science, 2015, 50(3):1017-1040.
|
[6] |
PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9):3221-3227.
|
[7] |
PEKALA R W. Melamine-formaldehyde aerogels:US5086085[P]. 1992.
|
[8] |
ARDUINI, GIRI, GIANNONE. "Prepidil versus propess":induzione farmacologica del travaglio di parto con dinoprostone[J]. Minerva Ginecologica, 2008, 60(2):127-133.
|
[9] |
LU X, ARDUINI-SCHUSTER M C, KUHN J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science, 1992, 255(5047):971-972.
|
[10] |
TAN C, FUNG B M, NEWMAN J K, et al. Organic aerogels with very high impact strength[J]. Advanced Materials, 2010, 13(9):644-646.
|
[11] |
CHEN M, LI Z, LI J, et al. The extraction of uranium using graphene aerogel loading organic solution[J]. Talanta, 2017, 166:284-291.
|
[12] |
WEI X, QU C, LIANG Z, et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J]. Nano Letters, 2017, 17(5):2788-2792.
|
[13] |
WU D, FU R. Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels[J]. Journal of Porous Materials, 2008, 15(1):29-34.
|
[14] |
MIRZAEIAN M, HALL P J. The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels[J]. Journal of Materials Science, 2009, 44(10):2705-2713.
|
[15] |
蒋伟阳, 张波, 周斌等. 间苯二酚-甲醛有机气凝胶的结构控制研究[J]. 材料科学与工艺, 1996, 14(2):69-75. JIANG W Y, ZHANG B, ZHOU B, et al. Study on structure controlling of RF aerogels[J].Material Science & Technology, 1996, 14(2):69-75.
|
[16] |
李文翠, 郭树才, 王振林. 老化过程参数对新型纳米材料有机气凝胶特性影响研究[J]. 材料科学与工程学报, 2000, 18(2):25-27. LI W C, GUO S C, WANG Z L. Effect of aging process parameter on properties of organic aerogels[J]. Materials Science & Engineering, 2000, 18(2):25-27.
|
[17] |
YOUNG K S, HO Y D, WOO L J, et al. Synthesis and characterization of resorcinol-formaldehyde organic aerogel[J]. Journal of Chemical Engineering of Japan, 2001, 34(2):216-220.
|
[18] |
YIN R, CHENG H, HONG C, et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties[J]. Composites Part A Applied Science & Manufacturing, 2017, 101:500-510.
|
[19] |
KASCHMITTER J L, MAYER S T, PEKALA R W. Process for producing carbon foams for energy storage devices:US5789338[P]. 1998.
|
[20] |
PEKALA R W, FARMER J C, ALVISO C T, et al. Carbon aerogels for electrochemical applications[J]. Journal of Non-Crystalline Solids, 1998, 225(1):74-80.
|
[21] |
YAMAMOTO T, ENDO A, OHMORI T, et al. Porous properties of carbon gel microspheres as adsorbents for gas separation[J]. Carbon, 2004, 42(8/9):1671-1676.
|
[22] |
HAJI S, ERKEY C. Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2003, 42(26):6933-6937.
|
[23] |
MAHATA N, SILVA A R, PEREIRA M F, et al. Anchoring of a[Mn(salen)Cl] complex onto mesoporous carbon xerogels[J]. Journal of Colloid & Interface Science, 2007, 311(1):152-8.
|
[24] |
JOB N, MARIE J, LAMBERT S, et al. Carbon xerogels as catalyst supports for PEM fuel cell cathode[J]. Energy Conversion & Management, 2008, 49(9):2461-24702.
|
[25] |
TRAN H K, JOHNSON C E, HSU M T, et al. PICA forebody heatshield qualification for the stardust discovery class mission[R]. NASA, 1996.
|
[26] |
TRAN H, JOHNSON C, HSU M T, et al. Qualification of the forebody heatshield of the stardust's sample return capsule[C]//Thermophysics Conference. 2006:125-138.
|
[27] |
MILOS F S, CHEN Y K, GOKCEN T. Nonequilibrium ablation of phenolic impregnated carbon ablator[J]. Journal of Spacecraft Rockets, 2012, 49(5):894-904.
|
[28] |
MILOS F S, CHEN Y K. Ablation and thermal response property model validation for phenolic impregnated carbon ablator[J]. Journal of Spacecraft & Rockets, 2009, 47(5):786-805.
|
[29] |
OLYNICK D, CHEN Y K, TAUBER M, et al. Forebody TPS sizing with radiation and ablation for the stardust sample return capsule[C]//Thermophysics Conference. 2013.
|
[30] |
贾献峰, 刘旭华, 乔文明, 等. 酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80. JIA X F, LIU X H, QIAO W M, et al. Preparation and properties of phenolic of phenolic impregnated carbon ablator[J].Aerospace Materials & Technology, 2016, 46(1):77-80.
|
[31] |
贾献峰, 王际童, 龙东辉, 等. PICA-X的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6):46-49. JIA X F, WANG J T, LONG D H, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials & Technology, 2016, 46(6):46-49.
|