1 |
Schedin F , Geim A K , Morozov S V , et al . Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.
|
2 |
Sun J , Muruganathan M , Mizuta H . Room temperature detection of individual molecular physisorption using suspended bilayer graphene[J]. Science Advances, 2016, 2(4): e1501518-e1501518.
|
3 |
Fowler J D , Allen M J , Tung V C , et al . Practical chemical sensors from chemically derived graphene[J]. ACS Nano., 2009, 3(2): 301-306.
|
4 |
Chung M G , Kim D H , Lee H M , et al . Highly sensitive NO2 gas sensor based on ozone treated graphene[J]. Sensors & Actuators B Chemical, 2012, 166/167(6): 172-176.
|
5 |
Wang C , Wang Y L , Zhan L , et al . Synthesis of nitrogen doped graphene through microwave irridation[J]. Journal of Inorganic Materials, 2012, 27(2): 146-150.
|
6 |
Li M J , Liu C M , Cao H B , et al . Surface charge research of graphene oxide, chemically reduced graphene oxide and thermally exfoliated graphene oxide[J]. Advanced Materials Research, 2013, 716: 127-131.
|
7 |
Varghese S S , Lonkar S , Singh K K , et al . Recent advances in graphene based gas sensors[J]. Sensors & Actuators B Chemical, 2015, 218: 160-183.
|
8 |
Drewniak S , Muzyka R , Stotolarczyk A , et al . Studies of reduced graphene oxide and graphite oxide in the aspect of their possible application in gas sensors[J]. Sensors, 2016, 16(1): 103-103.
|
9 |
Wang T , Huang D , Yang Z , et al . A review on graphene-based gas/vapor sensors with unique properties and potential applications[J]. Nano-Micro Letters, 2016, 8(2): 95-119.
|
10 |
Botas C , Álvarez P , Blanco C , et al . Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide[J]. Carbon, 2013, 52(2): 476-485.
|
11 |
Wen-Yu C , Yang S Y , Wu W J , et al . A room temperature operation formaldehyde sensing material printed using blends of reduced graphene oxide and poly(methyl methacrylate)[J]. Sensors, 2015, 15(11): 28842-28853.
|
12 |
Xu Z , Xue K . Engineering graphene by oxidation: a first-principles study[J]. Nanotechnology, 2010, 21(4): 045704-045704.
|
13 |
Lu G , Park S , Yu K , et al . Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations[J]. ACS Nano, 2011, 5(2): 1154-1164.
|
14 |
陈浩, 彭同江, 刘波, 等 . 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响[J]. 物理学报, 2017, 66(8): 24-32.
|
|
Chen H , Peng T J , Liu B , et al . Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature[J]. Acta Phys. Sin., 2017, 66(8): 24-32.
|
15 |
Lu G , Ocola L E , Chen J . Reduced graphene oxide for room-temperature gas sensors[J]. Nanotechnology, 2009, 20(44): 445502-445502.
|
16 |
Wu J , Feng S , Li A , et al . Boosted sensitivity of graphene gas sensor via nanoporous thin film structures[J]. Sens. Actuators B Chem, 2018, 255: 1805-1813.
|
17 |
Wu J , Feng S , Wei X , et al . Facile synthesis of 3D graphene flowers for ultrasensitive and highly reversible gas sensing[J]. Advanced Functional Materials, 2016, 26(41): 7462-7469.
|
18 |
Guo L , Jiang H B , Shao R Q , et al . Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J]. Carbon, 2012, 50(4): 1667-1673.
|
19 |
Travlou N A , Rodriguez -Castellon E , Bandosz T J . Sensing of NH3 on heterogeneous nanoporous carbons in the presence of humidity[J]. Carbon, 2016, 100: 64-73.
|
20 |
王泉珺, 孙红娟, 彭同江, 等 . 氧化程度对氧化石墨烯吸附亚甲基蓝性能的影响[J]. 化工学报, 2017, 68(4): 1712-1720.
|
|
Wang Q J , Sun H J , Peng T J , et al . Influence of oxidation degree of graphene oxide on adsorption performance for methylene blue[J]. CIESC Journal, 2017, 68(4): 1712-1720.
|
21 |
孙红娟, 彭同江 . 石墨氧化-还原法制备石墨烯材料[M]. 北京: 科学出版社, 2015: 52-79.
|
|
Sun H J , Peng T J . Graphene Materials Prepared by Oxidation-reduction Method from Graphite[M]. Beijng: Science Press, 2015: 52-79.
|
22 |
黄桥, 孙红娟, 杨勇辉 . 氧化石墨的谱学表征及分析[J]. 无机化学学报, 2011, 27(9): 1721-1726.
|
|
Huang Q , Sun H J , Yang Y H . Spectroscopy characterization and analysis of graphite oxide[J]. Chin.J. Inorg
|
|
Chem, 2011, 27(9): 1721-1726.
|
23 |
陈浩, 彭同江, 孙红娟 . 氧化石墨烯薄膜厚度对元件湿敏性能的影响[J]. 材料导报, 2016, 30(23): 140-145.
|
|
Chen H , Peng T J , Sun H J . Influence of thickness of grapheme oxide thin film on humidity sensitivity[J]. Materials Review, 2016, 30(23): 140-145.
|
24 |
Rozada R , Paredes J I , López M J , et al . From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration.[J]. Nanoscale, 2015, 7(6): 2374-2390.
|
25 |
Acik M , Lee G , Mattevi C , et al . Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J]. Nature Materials, 2010, 9(10): 840-845.
|
26 |
刘波, 孙红娟, 彭同江 . 石墨烯分子振动模式因子群分析与密度泛函计算[J]. 物理化学学报, 2012, 28(4): 799-804.
|
|
Liu B , Sun H J , Peng T J . Factor group analysis of molecular vibrational modes of graphene and density functional calculations[J]. Journal of Physical Chemistry, 2012, 28(4): 799-804.
|
27 |
Zhang X , Liu D , Yang L , et al . Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis[J]. Journal of Materials Chemistry A, 2015, 3(18): 10031-10037.
|
28 |
Dimiev A M , Alemany L B , Tour J M . Graphene oxide. origin of acidity, its instability in water, and a new dynamic structural model.[J]. ACS Nano, 2012, 7(1): 576-588.
|
29 |
翁程杰, 史叶勋, 何大方, 等 . 水热法制备还原氧化石墨烯及其导电性调控[J]. 化工学报, 2018, 69(7): 3263-3269.
|
|
Weng C J , Shi Y X , He D F , et al . Hydrothermal synthesis of reduced graphene oxide with tunable conductivity[J]. CIESC Journal, 2018, 69(7): 3263-3269.
|
30 |
Acik M , Lee G , Mattevi C , et al . The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. Journal of Physical Chemistry C, 2015, 115(40): 19761-19781.
|
31 |
Rimeika R , Barkauskas J , Čiplys D . Surface acoustic wave response to ambient humidity in graphite oxide structures[J]. Applied Physics Letters, 2011, 99(5): 1381. 051915-05195-3.
|
32 |
Yu M R , Wu R J , Suyambrakasam G , et al . Evaluation of graphene oxide material as formaldehyde gas sensor[J]. Journal of Computational & Theoretical Nanoscience, 2012, 16(1): 53-57.
|