[1] |
LIU Y, ADEWUYI Y G. A review on removal of elemental mercury from flue gas using advanced oxidation process:chemistry and process[J]. Chemical Engineering Research & Design, 2016, 112:199-250.
|
[2] |
CHENG G, BAI B, ZHANG Q, et al. Hg? removal from flue gas by ionic liquid/H?O?[J]. Journal of Hazardous Materials, 2014, 280:767.
|
[3] |
高正阳, 周黎明, 于航, 等. 应用量子化学计算研究溴与汞反应的动力学参数[J]. 化工学报, 2013, 64(9):3235-3240. GAO Z Y, ZHOU L M, YU H, et al. Reactivity between mercury and bromine compounds by quantum chemistry calculation[J]. CIESC Journal, 2013, 64(9):3235-3240.
|
[4] |
GENCHI G, SINICROPI M S, CAROCCI A, et al. Mercury exposure and heart diseases[J]. International Journal of Environmental Research & Public Health, 2017, 14(1):74.
|
[5] |
郑剑铭, 周劲松, 何胜, 等. 燃煤电厂汞排放对周边环境的影响[J]. 化工学报, 2009, 60(12):3104-3111. ZHENG J M, ZHOU J S, HE S, et al. Environmental impact of mercury emission from a coal-fired power plant[J]. CIESC Journal, 2009, 60(12):3104-3111.
|
[6] |
XIAO Y, PUDASAINEE D, GUPTA R, et al. Elemental mercury reaction chemistry on brominated petroleum cokes[J]. Carbon, 2017, 124:89-96
|
[7] |
LEE S H, RHIM Y J, CHO S P, et al. Carbon-based novel sorbent for removing gas-phase mercury[J]. Fuel, 2006, 85(2):219-226.
|
[8] |
ZHAO K, ZHANG H, CHEN J, et al. Removal of elemental mercury by the modified petroleum coke[J]. Journal of Shandong University of Science & Technology, 2016, 35(4):67-73.
|
[9] |
HONG Y, DUAN Y, ZHU C, et al. Experimental study on mercury removal of high-sulfur petroleum coke activated carbon impregnated with bromine[J]. Proceedings of the CSEE, 2014, 34(11):1762-1768.
|
[10] |
王晨平, 段钰锋, 佘敏, 等. SO2活化改性石油焦吸附剂的汞吸附特性[J]. 化工学报, 2017, 68(12):4764-4773. WANG C P, DUAN Y F, SHE M, et al. Mercury adsorption characteristics of petroleum coke activated by SO2[J]. CIESC Journal, 2017, 68(12):4764-4773.
|
[11] |
XIAO Y, PUDASAINEE D, GUPTA R, et al. Bromination of petroleum coke for elemental mercury capture[J]. Journal of Hazardous Materials, 2017, 336:232-239.
|
[12] |
肖艺, 刁永发, 田力, 等. 载溴石油焦脱除烟气痕量Hg0的动力学机理[J]. 中国环境科学, 2018, 38(2):508-515. XIAO Y, DIAO Y F, TIAN L, et al. Kinetic mechanism of brominated petroleum coke for trace Hg0 removal from flue gas[J]. China Environmental Science, 2018, 38(2):508-515.
|
[13] |
LING L, FAN M, WANG B, et al. Application of computational chemistry in understanding the mechanisms of mercury removal technologies:a review[J]. Energy & Environmental Science, 2015, 8(11):3109-3133.
|
[14] |
CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:selection of molecular system and model chemistry[J]. Carbon, 1998, 36(7/8):1061-1070.
|
[15] |
PADAK B, WILCOX J. Understanding mercury binding on activated carbon[J]. Environmental Progress & Sustainable Energy, 2009, 47(12):2855-2864.
|
[16] |
RUNGNIM C, PROMARAK V, HANNONGBUA S, et al. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon[J]. Journal of Hazardous Materials, 2016, 310:253-260.
|
[17] |
李猛, 刘晶, 郑楚光. 未燃尽炭表面吸附汞的机理研究[J]. 工程热物理学报, 2007, 28(5):882-884. LI M, LIU J, ZHENG C G, et al. Studies on mercury unburned adsorption mechanism on carbon surface[J]. Journal of Engineering Thermophysics, 2007, 28(5):882-884.
|
[18] |
陈进富, 李兴存, 李术元. 石油焦活化机理的研究[J]. 燃料化学学报, 2004, 32(1):54-58. CHEN J F, LI X C, LI S Y, et al. Research on activation mechanism of petroleum cokes[J]. Journal of Fuel Chemistry and Technology, 2004, 32(1):54-58.
|
[19] |
何川. 高硫石油焦脱硫技术研究[D]. 长沙:中南大学, 2013. HE C. Study on desulfurization technology of high-sulfur petroleum coke[D]. Changsha:Central South University, 2013.
|
[20] |
XIAO J, ZHONG Q, LI F, et al. Modeling the change of green coke to calcined coke using Qingdao high-sulfur petroleum coke[J]. Energy & Fuels, 2015, 29(5):3345-3352
|
[21] |
高正阳, 杨维结. 卤素改性活性炭氧化单质汞的机理研究[J]. 工程热物理学报, 2017, 38(2):381-385. GAO Z Y, YANG W J. The study of reaction mechanism of mercury oxidation on halogenated activated carbon[J]. Journal of Engineering Thermophysics, 2017, 38(2):381-385.
|
[22] |
LIU J, QU W, SANG W J, et al. Effect of SO2 on mercury binding on carbonaceous surfaces[J]. Chemical Engineering Journal, 2012, 184(2):163-167.
|
[23] |
THEILACKER K, ARBUZNIKOV A V, BAHMANN H, et al. Evaluation of a combination of local hybrid functionals with DFT-D3 corrections for the calculation of thermochemical and kinetic data[J]. Journal of Physical Chemistry A, 2011, 115(32):8990.
|
[24] |
FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16:Revision A.03[CP]. Wallingford CT:Gaussian Inc., 2016.
|
[25] |
HOBSON J P. Physical adsorption[J]. C R C Critical Reviews in Solid State Sciences, 1973, 4(1/2/3/4):221-245.
|
[26] |
MAYER I. Bond order and valence:relations to Mulliken's population analysis[J]. International Journal of Quantum Chemistry, 1984, 26(1):151-154.
|
[27] |
LU T, CHEN F. Multiwfn:a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5):580.
|
[28] |
邢其毅, 徐瑞秋, 周政. 基础有机化学[M]. 北京:高等教育出版社, 2005:876. XING Q Y, XU R Q, ZHOU Z. Basic Organic Chemistry[M]. Beijing:Higher Education Press, 2005:876.
|
[29] |
OLSON E S, LAUMB J D, BENSON S A, et al. An improved model for flue gas-mercury interactions on activated carbons[C]//Proceedings of the Combined Power Plant Air Pollutant Control Mega Symposium, 2003:19-22.
|
[30] |
ZEFIROV Y V. Van der Waals atomic radii of Group Ⅰ-Ⅲ metals[J]. Russian Journal of Inorganic Chemistry, 2000, 45(10):1552-1554.
|