CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 960-968.DOI: 10.11949/j.issn.0438-1157.20180623
• Separation engineering • Previous Articles Next Articles
Jie YANG(),Jiangyu QI,Yong SHA()
Received:
2018-06-07
Revised:
2018-11-06
Online:
2019-03-05
Published:
2019-03-05
Contact:
Yong SHA
通讯作者:
沙勇
作者简介:
<named-content content-type="corresp-name">杨杰</named-content>(1991—),男,硕士研究生,<email>13476075820@163.com</email>|沙勇(1971—),男,博士,副教授,<email>ysha@xmu.edu.cn</email>
CLC Number:
Jie YANG, Jiangyu QI, Yong SHA. Simulation and analysis of reactive dividing-wall column for methylal production process[J]. CIESC Journal, 2019, 70(3): 960-968.
杨杰, 祁江羽, 沙勇. 反应精馏隔壁塔制甲缩醛过程模拟与分析[J]. 化工学报, 2019, 70(3): 960-968.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180623
平衡常数 | A | B |
---|---|---|
| -16.984 | 5233.2 |
| -8.145 | 3991 |
| 4.980×10-3 | 869.5 |
| 1.908×10-2 | 544.5 |
| -14.755 | 5969.4 |
| -5.851 | 4463 |
| -4.966×10-1 | -491.3 |
Table 1 Reaction equilibrium constants
平衡常数 | A | B |
---|---|---|
| -16.984 | 5233.2 |
| -8.145 | 3991 |
| 4.980×10-3 | 869.5 |
| 1.908×10-2 | 544.5 |
| -14.755 | 5969.4 |
| -5.851 | 4463 |
| -4.966×10-1 | -491.3 |
k f(T 0)/(mol/(g·s)) | k b(T 0)/(mol/(g·s)) | E f/(kJ/mol) | E b/(kJ/mol) | T 0/K |
---|---|---|---|---|
1.571×10-3 | 6.1×10-5 | 54.65 | 54.74 | 333.15 |
Table 2 Parameters of reactive kinetic model of methylal formation
k f(T 0)/(mol/(g·s)) | k b(T 0)/(mol/(g·s)) | E f/(kJ/mol) | E b/(kJ/mol) | T 0/K |
---|---|---|---|---|
1.571×10-3 | 6.1×10-5 | 54.65 | 54.74 | 333.15 |
项目 | 计算关联关系[ | 备注[ | |
---|---|---|---|
设备投资费用(CI)/USD | 塔壳 | | M&S=1497.73 F m=F p=1.0 |
填料 | | Cp, n =3000 USD/m3 | |
换热器 | | U C=852 W/(m2·K) U R=568 W/ (m2·K) F d,C=0.85 F d,R=1.35 | |
操作费用(OC)/(USD/a) | 蒸汽 | | C s=0.028 USD/kg λ v=2762.9 kJ/kg |
冷水 | | C w=1.48×10-5USD/kg ?T=10 K cp =4.18 kJ/(kg·K) | |
催化剂 | | C cat=7.7 USD/kg |
Table 3 Formulas of TAC calculation
项目 | 计算关联关系[ | 备注[ | |
---|---|---|---|
设备投资费用(CI)/USD | 塔壳 | | M&S=1497.73 F m=F p=1.0 |
填料 | | Cp, n =3000 USD/m3 | |
换热器 | | U C=852 W/(m2·K) U R=568 W/ (m2·K) F d,C=0.85 F d,R=1.35 | |
操作费用(OC)/(USD/a) | 蒸汽 | | C s=0.028 USD/kg λ v=2762.9 kJ/kg |
冷水 | | C w=1.48×10-5USD/kg ?T=10 K cp =4.18 kJ/(kg·K) | |
催化剂 | | C cat=7.7 USD/kg |
Item | RD | RDWC | |
---|---|---|---|
RD-C | RE-C | RD-C | |
column parameters | |||
pressure/kPa | 101.3 | 101.3 | 101.3 |
number of theoretical stages | 29 | 19 | 40, 5 |
column diameter/m | 0.8 | 0.4 | 0.8 |
mole reflux ratio | 3.48 | 1.20 | 3.48 |
distillate rate/(kg/h) | 1381 | 333.1 | 1381, 333.1 |
total catalyst mass/kg | 290 | 290 | |
capacity cost×10-3/(USD/a) | |||
column | 90.0 | 22.3 | 126.3 |
heat exchanger | 177.6 | 65.3 | 217.2 |
operating cost×10-3/(USD/a) | |||
energy | 187.8 | 72.8 | 233.1 |
catalyst | 8.93 | 8.93 | |
TAC×10-3/(USD/a) | 285.9 | 102.0 | 356.5 |
total TAC×10-3/(USD/a) | 387.9 | 356.5 |
Table 4 Configurations and costs of two processes
Item | RD | RDWC | |
---|---|---|---|
RD-C | RE-C | RD-C | |
column parameters | |||
pressure/kPa | 101.3 | 101.3 | 101.3 |
number of theoretical stages | 29 | 19 | 40, 5 |
column diameter/m | 0.8 | 0.4 | 0.8 |
mole reflux ratio | 3.48 | 1.20 | 3.48 |
distillate rate/(kg/h) | 1381 | 333.1 | 1381, 333.1 |
total catalyst mass/kg | 290 | 290 | |
capacity cost×10-3/(USD/a) | |||
column | 90.0 | 22.3 | 126.3 |
heat exchanger | 177.6 | 65.3 | 217.2 |
operating cost×10-3/(USD/a) | |||
energy | 187.8 | 72.8 | 233.1 |
catalyst | 8.93 | 8.93 | |
TAC×10-3/(USD/a) | 285.9 | 102.0 | 356.5 |
total TAC×10-3/(USD/a) | 387.9 | 356.5 |
1 | Masamoto J , Matsuzaki K . Development of methylal synthesis by reactive distillation[J]. Journal of Chemical Engineering of Japan, 1994, 27(1): 1-5. |
2 | Kolah A K , Mahajani S M , Sharma M M . Acetalization of formaldehyde with methanol in batch and continuous reactive distillation columns[J]. Industrial & Engineering Chemistry Research, 1996, 35(10): 3707-3720. |
3 | Masamoto J , Ohtake J , Kawamura M . Process for producing formaldehyde and derivatives thereof: US4967014[P]. 1990. |
4 | Sun J , Li H , Song H , et al . Synthesis of methylal from methanol and formaldehyde catalyzed by Brønsted acid ionic liquids with different alkyl groups[J]. RSC Advances, 2015, 5(106): 87200-87205. |
5 | Yuan Y , Liu H , Imoto H , et al . Selective synthesis of methylal from methanol on a new crystalline SbRe2O6 catalyst[J]. Chemistry Letters, 2000, 29(6): 674-675. |
6 | Liu H , Iglesia E . Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+ n V n Mo12- n PO40 keggin structures[J]. The Journal of Physical Chemistry B, 2003, 107(39): 10840-10847. |
7 | Tanaka Y , Yamamoto S . Method of refining methylal: 1160392[P]. 1997. |
8 | Wang Q , Yu B , Xu C . Design and control of distillation system for methylal/methanol separation(Ⅰ): Extractive distillation using DMF as an entrainer[J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1281-1292. |
9 | Xia M , Yu B , Wang Q , et al . Design and control of extractive dividing-wall column for separating methylal-methanol mixture[J]. Industrial & Engineering Chemistry Research, 2012, 51(49): 16016-16033. |
10 | Hasse H , Drunsel J O , Burger J , et al . Process for the production of pure methylal: EP2450336[P]. 2016. |
11 | Yu B , Wang Q , Xu C . Design and control of distillation system for methylal/methanol separation(Ⅱ): Pressure swing distillation with full heat integration[J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1293-1310. |
12 | Xia M , Xin Y , Luo J , et al . Temperature control for extractive dividing-wall column with an adjustable vapor split: methylal/methanol azeotrope separation[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17996-18013. |
13 | Zhang X , Zhang S , Jian C . Synthesis of methylal by catalytic distillation[J]. Chemical Engineering Research and Design, 2011, 89(6): 573-580. |
14 | Laird T . Advanced distillation technologies: design, control and applications[J]. Organic Process Research & Development, 2013, 17(8):1074. |
15 | Dejanović I , Matijašević L , Ž Olujić . Dividing wall column—a breakthrough towards sustainable distilling[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(6): 559-580. |
16 | Ö Yildirim , Kiss A A , Kenig E Y . Dividing wall columns in chemical process industry: a review on current activities[J]. Separation and Purification Technology, 2011, 80(3): 403-417. |
17 | Hernández S , Sandoval-Vergara R , Barroso-Muñoz F O , et al . Reactive dividing wall distillation columns: simulation and implementation in a pilot plant[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(1): 250-258. |
18 | Kiss A A , Pragt J , van Strien C . Reactive dividing-wall columns: towards enhanced process integration[J]. Distillation & Absorption, IChemE, Eindhoven, The Netherlands, 2010, 32(1): 253-258. |
19 | Kuhnert C , Albert M , Breyer S , et al . Phase equilibrium in formaldehyde containing multicomponent mixtures: experimental results for fluid phase equilibria of (formaldehyde + (water or methanol) + methylal)) and (formaldehyde + water + methanol + methylal) and comparison with predictions[J]. Industrial & Engineering Chemistry Research, 2006, 45(14): 5155-5164. |
20 | Drunsel J O , Renner M , Hasse H . Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis[J]. Chemical Engineering Research and Design, 2012, 90(5): 696-703. |
21 | González R , Fuhrmeister R , Sudhoff D , et al . Optimal design of catalytic distillation columns: a case study on synthesis of TAEE[J]. Chemical Engineering Research and Design, 2014, 92(3): 391-404. |
22 | Subawalla H , Fair J R . Design guidelines for solid-catalyzed reactive distillation systems[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3696-3709. |
23 | Behrens M . Hydrodynamics and mass transfer of modular catalytic structured packing[D]. TU Delft: Delft University of Technology, 2006. |
24 | Luyben W L , Yu C C . Reactive Distillation Design and Control[M]. New York: John Wiley & Sons Inc., 2009:31-54. |
25 | Douglas J M . Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill, 1988: 265-291. |
26 | Turton R , Bailie R C , WHITING W B , et al . Analysis, Synthesis and Design of Chemical Processes[M]. New Jersey: Pearson Education, Inc., 2012: 205-254. |
27 | Arfaj M A , Luyben W L . Control study of ethyl tert-butyl ether reactive distillation[J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 3784-3796. |
28 | Wang S J , Cheng S H , Chiu P H , et al . Design and control of a thermally coupled reactive distillation process synthesizing diethyl carbonate[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 5982-5995. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[4] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[5] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[6] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[7] | Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488. |
[8] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[9] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[10] | Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices [J]. CIESC Journal, 2023, 74(1): 60-73. |
[11] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[12] | Taoyan ZHAO, Jiangtao CAO, Ping LI, Lin FENG, Yu SHANG. Application of interval type-2 fuzzy immune PID controller to temperature control system for uncatalysed oxidation of cyclohexane [J]. CIESC Journal, 2022, 73(7): 3166-3173. |
[13] | Jing WAN, Lin ZHANG, Yachao FAN, Xiemin LIU, Peicheng LUO, Feng ZHANG, Zhibing ZHANG. Bioreactor scale-up simulation and experimental study based on mesoscale PBM model [J]. CIESC Journal, 2022, 73(6): 2698-2707. |
[14] | Shujun ZHANG, Shihui WANG, Xin ZHANG, Xu JI, Yiyang DAI, Yagu DANG, Li ZHOU. Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit [J]. CIESC Journal, 2022, 73(4): 1658-1672. |
[15] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||