CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 1027-1034.DOI: 10.11949/j.issn.0438-1157.20180785
• Surface and interface engineering • Previous Articles Next Articles
Changchun HE1(),Lei XU1(),Wei CHEN1,Xiaofeng XU2,Pengwei OUYANG2
Received:
2018-07-12
Revised:
2018-12-11
Online:
2019-03-05
Published:
2019-03-05
Contact:
Lei XU
通讯作者:
徐磊
作者简介:
<named-content content-type="corresp-name">何昌春</named-content>(1980—),男,博士,工程师,<email>hechangchungz@163.com</email>|徐磊(1988—),男,硕士,工程师,<email>ryanxoo@foxmail.com</email>
CLC Number:
Changchun HE, Lei XU, Wei CHEN, Xiaofeng XU, Pengwei OUYANG. Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower[J]. CIESC Journal, 2019, 70(3): 1027-1034.
何昌春, 徐磊, 陈伟, 徐晓峰, 欧阳鹏威. 常顶系统流动腐蚀机理预测及防控措施优化[J]. 化工学报, 2019, 70(3): 1027-1034.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180785
组分 | 体积分数/% | 组分 | 体积分数/% |
---|---|---|---|
氢气 | 0 | 1-丁烯 | 0.12 |
空气 | 1.98 | 反-2-丁烯 | 0 |
甲烷 | 2.23 | 顺-2-丁烯 | 0.54 |
乙烷 | 9.34 | 碳五以上 | 26.23 |
乙烯 | 0 | 一氧化碳 | 0 |
丙烷 | 20.43 | 二氧化碳 | 2.41 |
丙烯 | 0 | 硫化氢 | 0.26 |
异丁烷 | 9.47 | 合计 | 99.98 |
正丁烷 | 26.97 | 流量/(kmol·h-1) | 205.84 |
Table 1 Gas composition and flowrate in atmospheric tower overhead system
组分 | 体积分数/% | 组分 | 体积分数/% |
---|---|---|---|
氢气 | 0 | 1-丁烯 | 0.12 |
空气 | 1.98 | 反-2-丁烯 | 0 |
甲烷 | 2.23 | 顺-2-丁烯 | 0.54 |
乙烷 | 9.34 | 碳五以上 | 26.23 |
乙烯 | 0 | 一氧化碳 | 0 |
丙烷 | 20.43 | 二氧化碳 | 2.41 |
丙烯 | 0 | 硫化氢 | 0.26 |
异丁烷 | 9.47 | 合计 | 99.98 |
正丁烷 | 26.97 | 流量/(kmol·h-1) | 205.84 |
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK①/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK②/℃ |
---|---|---|---|---|---|---|---|---|
74.1 | 40.3 | 0.076 | 672.8 | 25 | 36 | 72 | 126 | 146 |
Table 2 Second-stage oil process parameters and composition in atmospheric tower overhead system
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK①/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK②/℃ |
---|---|---|---|---|---|---|---|---|
74.1 | 40.3 | 0.076 | 672.8 | 25 | 36 | 72 | 126 | 146 |
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK/℃ | 5%/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK/℃ |
---|---|---|---|---|---|---|---|---|---|
133.8 | 90.1 | 0.127 | 726.4 | 48 | 74 | 83 | 118 | 161 | 167 |
Table 3 First-stage oil (output + reflux) process parameters and composition in atmospheric tower overhead system
流量/(t·h-1) | 温度/℃ | 压力/MPa | 密度/(kg·m-3) | HK/℃ | 5%/℃ | 10%/℃ | 50%/℃ | 90%/℃ | KK/℃ |
---|---|---|---|---|---|---|---|---|---|
133.8 | 90.1 | 0.127 | 726.4 | 48 | 74 | 83 | 118 | 161 | 167 |
流量/ (t·h-1) | 温度/ ℃ | 压力/ MPa | 氨氮/(mg·L-1) | 硫/ (mg·L-1) | pH | 氯离子/(mg·kg-1) |
---|---|---|---|---|---|---|
13.06 | 40 | 0.1 | 78.6 | 76.5 | 7.56 | 72.6 |
Table 4 Sour water process parameters and composition in atmospheric tower overhead system
流量/ (t·h-1) | 温度/ ℃ | 压力/ MPa | 氨氮/(mg·L-1) | 硫/ (mg·L-1) | pH | 氯离子/(mg·kg-1) |
---|---|---|---|---|---|---|
13.06 | 40 | 0.1 | 78.6 | 76.5 | 7.56 | 72.6 |
注水量/(t·h-1) | 液态水含量/%(mass) |
---|---|
21.2 | 5.26 |
22.0 | 8.76 |
22.3 | 10.01 |
23.6 | 15.05 |
25.1 | 20.22 |
26.7 | 25.09 |
28.5 | 29.92 |
Table 5 Relationship between percentage of liquid water and injected water flowrate
注水量/(t·h-1) | 液态水含量/%(mass) |
---|---|
21.2 | 5.26 |
22.0 | 8.76 |
22.3 | 10.01 |
23.6 | 15.05 |
25.1 | 20.22 |
26.7 | 25.09 |
28.5 | 29.92 |
1 | 殷雪峰, 莫少明, 韩磊, 等. 常减压蒸馏装置塔顶空冷器腐蚀泄漏研究[J]. 石油化工腐蚀与防护, 2014, 31(4): 1-4. |
YinX F, MoS M, HanL, et al. Study on corrosion leakage of atmosphere tower overhead air coolers[J]. Corrosion & Protection in Petrochemical Industry, 2014, 31(4): 1-4. | |
2 | 郭辉. 常压蒸馏装置塔顶系统腐蚀机理分析及措施[J]. 石油化工腐蚀与防护, 2017, 34(4): 62-64 |
GuoH. Mechanic analysis and countermeasures of corrosion in overhead system of atmospheric distillation unit[J]. Corrosions & Protection in Petrochemical Industry, 2017, 34(4): 62-64. | |
3 | 侯芙生. 中国炼油技术[M]. 北京: 中国石化出版社, 2011: 53-98. |
HouF S. China Oil Refining Technology[M]. Beijing: Sinopec Press, 2011: 53-98. | |
4 | SlavchevaE, ShoneB, TurnbullA. Review of naphthenic acid corrosion in oil refining[J]. Brit. Corros. J., 1999, 34(2): 125-131. |
5 | SchemppP. PreußK. TrögerM. About the correlation between crude oil corrosiveness and results from corrosion monitoring in an oil refinery[J]. Corrosion, 2016, 72(6): 843-855. |
6 | JohnsonD, McateerG, ZukH. The safe process of high naphthenic acid content crude oils—refinery experience and mitigation studies[J]. NACE Corrosion, 2003, 03645. |
7 | WuX Q, JingH M, ZhengY G, et al. Erosion–corrosion of various oil-refining materials in naphthenic acid[J]. Wear, 2004, 256: 133-144. |
8 | ShargayC A. Effect of nonextractable chlorides on refinery corrosion and fouling[R]. NACE Publication 34105, Houston, TX, 2005. |
9 | CayardM S. Crude distillation unit—distillation tower overhead system corrosion[R]. NACE Publication 34109, Houston, TX, 2009. |
10 | WuB, LiX, LiY, et al. Hydrolysis reaction tendency of low-boiling organic chlorides to generate hydrogen chloride in crude oil distillation. Energy Fuels, 2016, 30(2): 1524-1530. |
11 | 关乐. 常压塔顶系统露点腐蚀控制研究[D]. 西安: 西安石油大学, 2014. |
GuanL. The controlling research on dew point corrosion at the top system of the atmospheric tower[D]. Xi’an: Xi’an Shiyou University, 2014. | |
12 | 段永锋, 于凤昌, 崔中强, 等. 蒸馏塔顶系统露点腐蚀与控制[J]. 石油化工腐蚀与防护, 2014, 31(5): 29-33. |
DuanY F, YuF C, CuiZ Q, et al. Dew-point corrosion in crude distillation unit overhead system and prevention[J]. Corrosion & Protection in Petrochemical Industry, 2014, 31(5): 29-33. | |
13 | 王凯. HCl-H2O体系露点腐蚀规律及预测方法研究[D]. 杭州: 浙江理工大学, 2013 |
WangK. Research of HCl-H2O system dew-point corrosion law and prediction method[D]. Hangzhou: Zhejiang Sci-Tech University, 2013. | |
14 | 王海博, 李云, 欧阳文彬, 等. Aspen Plus模拟预测常压塔顶冷凝系统露点及pH值[J]. 石油学报(石油加工), 2018, 34(3): 629-633. |
WangH B, LiY, OuyangW B, et al. Aspen Plus predict water dew point and pH value of the overhead condensing system of crude atmospheric distillation unit[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(3): 629-633. | |
15 | WuY M. Calculations estimate process stream depositions[J]. Oil Gas J., 1994, 92(1): 38-41. |
16 | 金浩哲, 叶浩杰, 偶国富, 等. 基于偏最小二乘法的加氢换热器NH4Cl结晶温度预测模型[J]. 石油学报(石油加工), 2017, 33(6): 1176-1182. |
JinH Z, YeH J, OuG F, et al. Predicting model of ammonium salt crystallization temperature based on partial least squares approach in a hydrogenation heat-exchanger[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(6): 1176-1182. | |
17 | MunsonB R, CayardM S. Thermodynamic derivations of various ammonium salt deposition equations common to the refinery industry[J]. Corrosion, 2018, 74(10): 1158-1163. |
18 | SunA, FanD. Prediction, monitoring, and control of ammonium chloride corrosion in refining processes[J]. Corrosion, 2010, 10359. |
19 | KarimiA, VerdonC, MartinJ L, et al. Slurry erosion behavior of thermally sprayed WC-M coatings[J]. Wear, 1995, 186-197: 480-486. |
20 | RogersP M, HutchingsI M, LittleJ A. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds[J]. Wear, 1995, 186-197: 238-246. |
21 | PiehlR L, SinghA, HarveyC. Corrosion of reactor effluent air coolers[C]// NACE Corrosion. 1997: 97490. |
22 | HorvathR J, CayardM S, KaneR D. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditions[C]// NACE Corrosion. 2006: 06576. |
23 | HorvathR J, LagadV V, SrinivasanS, et al. Prediction and assessment of ammonium bisulfide corrosion under refinery sour water service conditons-part 2[C]// NACE Corrosion. 2010: 10349. |
24 | American Petroleum Institute. Design, materials, fabrication, operation, and inspection guidelines for corrosion control in hydroprocessing reactor effluent air cooler (REAC) systems: API RP 932-B-2012(2014)[S]. Washington D C: API Publishing Services, 2014. |
25 | TangP, YangJ, ZhengZ J, et al. Failure analysis and prediction of pipes due to the interaction between multiphase flow and structure[J]. Eng. Fail. Anal., 2009, 16: 1749-1756. |
26 | 张建文, 苏国庆, 姜爱国. 液化气脱硫装置再生塔返塔管线弯头腐蚀失效机制分析[J]. 化工学报, 2018, 69(8): 3537-3547. |
ZhangJ W, SuG Q, JiangA G. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit[J]. CIESC Journal, 2018, 69(8): 3537-3547. | |
27 | 中华人民共和国工业和信息化部. 高硫原油加工装置设备和管道设计选材导则: SH/T 3096—2012[S]. 北京: 中石化出版社, 2012. |
Ministry of Industry and Information Technology. Material selection guideline for design of equipment and piping in units processing sulfur crude oils: SH/T 3096—2012[S]. Beijing: Sinopec Press, 2012. | |
28 | 中华人民共和国工业和信息化部. 高酸原油加工装置设备和管道设计选材导则: SH/T 3129—2012[S]. 北京: 中石化出版社, 2012. |
Ministry of Industry and Information Technology. Material selection guideline for design of equipment and piping in units processing acid crude oils: SH/T 3129—2012[S]. Beijing: Sinopec Press, 2012. | |
29 | 国家石油和化学工业局. 石油化工设备和管道涂料防腐蚀技术规范: SH 3022—1999[S]. 北京: 中石化出版社, 1999. |
State Bureau of Petroleum and Chemical Industry. Technical specification for the coating anticorrosion of equipment and piping in petrochemical industry: SH/T 3022—1999[S]. Beijing: Sinopec Press, 1999. | |
30 | WhiteR A. Materials Selection for Petroleum Refineries and Gathering Facilities[M]. Houston: NACE International, 1998: 1-30. |
[1] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[4] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Jing ZHAO, Chengwen GU, Xigao JIAN, Zhihuan WENG. Preparation and performance evaluation of magnolol-based epoxy resin anti-corrosion coatings [J]. CIESC Journal, 2023, 74(7): 3010-3017. |
[7] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[8] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[9] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[10] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[11] | Xuan ZHOU, Mengya LI, Jie SUN, Zhenkai CEN, Qiangsan LYU, Lishan ZHOU, Haitao WANG, Dandan HAN, Junbo GONG. The regulation mechanism of additives on the amino acid crystal growth [J]. CIESC Journal, 2023, 74(2): 500-510. |
[12] | Weiyi SU, Jiahui DING, Chunli LI, Honghai WANG, Yanjun JIANG. Research progress of enzymatic reactive crystallization [J]. CIESC Journal, 2023, 74(2): 617-629. |
[13] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[14] | Xueying NAI, Peng WU, Yuan CHENG, Jianfei XIAO, Xin LIU, Yaping DONG. Study on hydrothermal crystallization kinetics of magnesium oxysulfate nanowires [J]. CIESC Journal, 2022, 73(7): 3038-3044. |
[15] | Xiaolan WEI, Wenjie QI, Jing DING, Jianfeng LU, Weilong WANG, Shule LIU. Effect of valence state of chromium in molten chloride salt on corrosivity of nickel-based alloy [J]. CIESC Journal, 2022, 73(7): 3182-3192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||