CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1302-1308.DOI: 10.11949/j.issn.0438-1157.20181000
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jingxian WANG1(),Youlin ZHENG2,Heng HU1,Bei WEI2,Qi LI2,Dapeng HU1()
Received:
2018-09-10
Revised:
2018-12-24
Online:
2019-04-05
Published:
2019-04-05
Contact:
Dapeng HU
王静娴1(),郑友林2,胡恒1,魏蓓2,李奇2,胡大鹏1()
通讯作者:
胡大鹏
作者简介:
<named-content content-type="corresp-name">王静娴</named-content>(1988—),女,博士研究生,<email>dl_jingxian_wang@163.com</email>|胡大鹏(1963—),男,博士,教授,<email>hudp@dlut.edu.cn</email>
基金资助:
CLC Number:
Jingxian WANG, Youlin ZHENG, Heng HU, Bei WEI, Qi LI, Dapeng HU. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator[J]. CIESC Journal, 2019, 70(4): 1302-1308.
王静娴, 郑友林, 胡恒, 魏蓓, 李奇, 胡大鹏. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181000
参数 | 数值 |
---|---|
通道长度 | 300 mm |
通道高度 | 18 mm |
通道数量 | 72 |
转子半径 | 125 mm |
转速 | ≤2800 r/min |
间隙尺寸 | ≤0.2 mm |
HP与LT喷嘴偏角 | 2.5°~22.5° |
Table 1 Design specifications
参数 | 数值 |
---|---|
通道长度 | 300 mm |
通道高度 | 18 mm |
通道数量 | 72 |
转子半径 | 125 mm |
转速 | ≤2800 r/min |
间隙尺寸 | ≤0.2 mm |
HP与LT喷嘴偏角 | 2.5°~22.5° |
端口 | 实验次数 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
HP-port | 23.6 | 23.6 | 23.8 | 23.7 | 24.1 |
LT-port | 6.3 | 6.2 | 6.5 | 6.4 | 6.5 |
HT-port | 58.8 | 59.0 | 60.3 | 60.2 | 60.5 |
MP-port | 19.6 | 19.2 | 19.4 | 19.4 | 19.3 |
Table 2 Temperature of 4 ports/℃
端口 | 实验次数 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
HP-port | 23.6 | 23.6 | 23.8 | 23.7 | 24.1 |
LT-port | 6.3 | 6.2 | 6.5 | 6.4 | 6.5 |
HT-port | 58.8 | 59.0 | 60.3 | 60.2 | 60.5 |
MP-port | 19.6 | 19.2 | 19.4 | 19.4 | 19.3 |
端口 | 表压/kPa | 温度/℃ |
---|---|---|
HP | 80 | 26.8 |
HT | 30 | 60.8 |
LT | 0.457 | 7.3 |
Table 3 Specifications of the boundary condition
端口 | 表压/kPa | 温度/℃ |
---|---|---|
HP | 80 | 26.8 |
HT | 30 | 60.8 |
LT | 0.457 | 7.3 |
1 | Pezhman A , Norbert M . Wave rotor research program at Michigan state university[C]// 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson, Arizona, USA: American Institute of Aeronautics and Astronautics, 2005: 3844-3859. |
2 | Kentfield J . Wave rotor and highlights of their development[C]// 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, Ohio, USA: American Institute of Aeronautics and Astronautics, 1988: 13-15. |
3 | 于洋, 刘培启, 王云磊, 等 . 高效气波冷凝装置流动及热力学特性[J]. 化工学报, 2017, 68(7): 3039-3048. |
Yu Y , Liu P Q , Wang Y L , et al . Flow and thermodynamic properties of efficient gas wave refrigeration plant[J]. CIESC Journal, 2017, 68(7): 3039-3048. | |
4 | 代玉强 . 外循环耗散式气波制冷机理分析与实验研究[D]. 大连: 大连理工大学, 2010. |
Dai Y Q . Principle study and experimental investigation of gas waves refrigeration by aggregated thermal dissipation[D]. Dalian: Dalian University of Technology, 2010. | |
5 | Dai Y Q , Liu F X , Wu J T , et al . Influence of skewing of contact face on performance of wave rotor refrigerators and superchargers[C]// The ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego, California, USA: ASME, 2013: 63449. |
6 | Dai Y Q , Liu P Q , Wu J T , et al . Unsteady behavior of real gas in wave rotor refrigerators[J]. Advanced Materials Research, 2011, 236/237/238: 1516-1522. |
7 | Hu D P , Li R F , Liu P Q , et al . The design and influence if port arrangement in an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107: 207-217. |
8 | 赵家权 . 振荡管内激波增压特性强化气波制冷性能研究[D]. 大连: 大连理工大学, 2013. |
Zhao J Q . Studying on gas wave refrigeration enhancement by the pressurize characteristics of shock wave in oscillation tube[D]. Dalian: Dalian University of Technology, 2013. | |
9 | Zhao J Q , Hu D P . An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work[J]. Shock Waves, 2017, 27(2): 325-332. |
10 | Hu D P , Yu Y , Liu P Q . Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2017, 130: 309-318. |
11 | 于洋 . 激波传递能量强化双开口振荡管制冷性能研究[D]. 大连: 大连理工大学, 2018. |
Yu Y . Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D]. Dalian: Dalian University of Technology, 2018. | |
12 | 丁美霞 . 径流式气波制冷机性能参数研究[D]. 大连: 大连理工大学, 2007. |
Ding M X . Influent of parameters on the performance of pressure exchanging refrigerator[D]. Dalian: Dalian University of Technology, 2007. | |
13 | Liu P Q , Zhu Y , Hu D P , et al . Investigation and optimization of wave motion behavior in pressure oscillation tube[J]. Experimental Thermal and Fluid Science, 2013, 50: 193-200. |
14 | 陈铭诤, 吴文 . 气波机一维非定常定熵流动图解法[J]. 力学情报, 1973, 6: 3-20. |
Chen M Z , Wu W . Diagrammatic method of one dimensional unsteady entropy flow for gas-wave machine[J]. Intelligence of Mechanics, 1973, 6: 3-20. | |
15 | Chan S N , Liu H X , Hu X Y . Wave system analyses of four-port through-flow wave rotor[J]. Journal of Aerospace Power, 2013, 28(2): 410-417 . |
16 | Gilberto M , Mark S . Preliminary design of a double expansion through flow wave rotor: thermal and gas dynamic analysis[C]// Turbine Technical Conference and Exposition of ASME Turbo Expo 2013. San Antonio, Texas, USA: International Gas Turbine Institute, 2013: T37A026. |
17 | Daniel W . A general numerical model for wave-rotor analysis [C]//NASA Technical Memorandum 105740. Cleveland, Ohio, USA: NASA Lewis Research Center, 1992: 92N31484. |
18 | Fatsis A , Lafond A , Ribaud Y . Preliminary analysis of the flow inside a three-port wave rotor by means of a numerical model[J]. Aerospace Science and Technology, 1998, 2(5): 289-300. |
19 | 刘培启, 徐思远, 王泽武, 等 . 偏角对气波制冷机制冷效率的影响及预测[J]. 化工学报, 2014, 65(11): 4271-4277. |
Liu P Q , Xu S Y , Wang Z W , et al . Influence of offset angle on refrigeration efficiency of gas wave refrigerator and prediction for optimal offset angle[J]. CIESC Journal, 2014, 65(11): 4271-4277. | |
20 | Okamoto K , Nagashima T . Simple numerical modeling for gas dynamic design of wave rotors[J]. Journal of Propulsion and Power, 2007, 23(1): 99-107. |
21 | Edwin L R J , Mocsari J C , Nalim M R . Analytic methods for design of eave cycle rotor for wave rotor core engine[C]// AIAA 29th Joint Propulsion Conference and Exhibit. Monterey, CA: The American Institute of Aeronautics and Astronautics, 1993: 1-12. |
22 | 赵家权, 刘培启, 赵文静, 等 . 激波管中非定常凝结现象的数值分析[J]. 化工学报, 2012, 63(4): 1050-1055. |
Zhao J Q , Liu P Q , Zhao W J , et al . Numerical analysis of unsteady condensation during expansion in shock tube[J]. CIESC Journal, 2012, 63(4): 1050-1055. | |
23 | 赵文静, 胡大鹏, 刘培启, 等 . 端口夹角对气波引射器性能的影响和预测[J]. 化工学报, 2012, 63(2): 573-577. |
Zhao W J , Hu D P , Liu P Q , et al . Influence of port angle on performance of gas wave ejector and prediction for optimal angle[J]. CIESC Journal, 2012, 63(2): 573-577. | |
24 | Koji O , Toshio N . Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power, 2007, 23(2): 292-300. |
25 | Patankar S V . Numerical Heat Transfer and Fluid Flow[M]. New York: McGraw-Hill, 1980. |
26 | Chang C H , Liou M S . A new approach to the simulation of compressible multi-fluid flows with AUSM+ scheme[C]// AIAA 16th Computational Fluid Dynamics Conference. Orlando, Florida, USA: The American Institute of Aeronautics and Astronautics, 2003: 4107. |
27 | 王海涛 . 变截面两端开口压力振荡管制冷性能分析[D]. 大连: 大连理工大学, 2017. |
Wang H T . Refrigeration performance analysis of the variable cross-section double-opening pressure oscillation tube[D]. Dalian: Dalian University of Technology, 2017. | |
28 | Hu D P , Li R F , Liu P Q , et al . The loss in charge process and effects on performance of wave rotor refrigerator[J]. International Journal of Heat and Mass Transfer, 2016, 100: 497-507. |
29 | 潘锦珊, 单鹏 . 气体动力学基础[M]. 北京: 国防工业出版社, 2011. |
Pan J S , Shan P . Fundamentals of Gas Dynamics[M]. Beijing: National Defense Industry Press, 2011. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||