1 |
黄景怀, 李军伟, 陈新建, 等 . 同轴管甲烷逆流燃烧器中火焰结构与燃烧稳定性[J]. 化工学报, 2016, 67(9): 3590-3597.
|
|
Huang J H , Li J W , Chen X J , et al . Flame stability and structure of opposed methane/air jet in coaxial tubes[J]. CIESC Journal, 2016, 67(9): 3590-3597.
|
2 |
Won S H , Dooley S , Dryer F L , et al . A radical index for the determination of the chemical kinetic contribution to diffusion flame extinction of large hydrocarbon fuels[J]. Combust. Flame, 2012, 159: 541-551.
|
3 |
吴松林, 杜扬, 张培理, 等 . 点火方式对受限空间油气爆燃规律的影响[J]. 化工学报, 2016, 67(4): 1626-1632.
|
|
Wu S L , Du Y . Zhang P L, et al . Effect of ignition node on gasoline-air deflagration behavior in confined space[J]. CIESC Journal, 2016, 67(4): 1626-1632.
|
4 |
郑立刚, 苏洋, 李刚, 等 . 点火位置对氢气/甲烷/空气预混气体爆燃特性的影响[J]. 化工学报, 2017, 68(12): 4874-4881.
|
|
Zheng L G , Su Y , Li G , et al . Effect of ignition position on deflagration characteristics of premixed hydrogen/methane/air[J]. CIESC Journal, 2017, 68(12): 4874-4881.
|
5 |
Linan A . The asymptotic structure of counterflow diffusion flames for large activation energies[J]. Acta Astronau., 1974, 1: 1007-1039.
|
6 |
Fendell F E . Ignition and extinction in combustion of initially unmixed reactants[J]. J. Fluid Mech., 1965, 21: 281–303.
|
7 |
Chung S H , Law C K . Structure and extinction of convective diffusion flames with general Lewis numbers[J]. Combust. Flame, 1983, 52: 59–79.
|
8 |
Chao B H , Law C K . Asymptotic theory of flame extinction with surface radiation[J]. Combust. Flame, 1993, 92: 1–24.
|
9 |
Kim J S , Williams F A . Extinction of diffusion flames with nonunity Lewis number[J]. J. Eng. Math., 1997, 31: 101–118.
|
10 |
Liu F , Smallwood G J , Gulder O L , et al . Asymptotic analysis of radiative extinction in counterflow diffusion flames of nonunity Lewis numbers[J]. Combust. Flame, 2000, 121: 275–287.
|
11 |
Won S H , Sun W T , Ju Y G . Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames[J]. Combust. Flame, 2010, 157: 411–420.
|
12 |
Won S H , Dooley S , Dryer F L , et al . Kinetic effects of aromatic molecular structures on diffusion flame extinction[J]. P. Combust. Inst., 2011, 33: 1163–1170.
|
13 |
Law C K . Asymptotic theory for ignition and extinction in droplet burning[J]. Combust. Flame, 1975, 24: 89-98.
|
14 |
Mills K , Matalon M . Burner-generated spherical diffusion flames [J]. Combust. Sci. Technol., 1997, 129: 295-319.
|
15 |
Williams F A . Progress in knowledge of flamelet structure and extinction [J]. Prog. Energ. Combust., 2000, 26: 657-682.
|
16 |
Shan R Q , Lu T F . Ignition and extinction in perfectly stirred reactors with detailed chemistry[J]. Combust. Flame, 2012, 159: 2069-2076.
|
17 |
Shan R Q , Lu T F . A bifurcation analysis for limit flame phenomena of DME/air in perfectly stirred reactors[J]. Combust. Flame, 2014, 161: 1716-1723.
|
18 |
Luo Z Y , Yoo C S , Richardson E S , et al . Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow[J]. Combust. Flame, 2012, 159: 265-274.
|
19 |
Shan R Q , Yoo C S , Chen J H , et al . Computational diagnostics for n-heptane flames with chemical explosive mode analysis[J]. Combust. Flame, 2012, 159: 3119-3127.
|
20 |
Kee R J , Miller J A , Coltrin M E , et al . OPPDIF: a FORTRAN program for computing opposed-flow diffusion flames[R]. San Diego, CA: Reaction Design Inc., 2000.
|
21 |
Nishioka M , Law C K , Takeno T . A flame-controlling continuation method for generating S-curve responses with detailed chemistry [J]. Combust. Flame, 1996, 104: 328-342.
|
22 |
Wang H , Laskin A . A comprehensive reaction model of ethylene and acetylene combustion[EB/OL]. [2007]. .
|
23 |
Lu T F , Law C K . Toward accommodating realistic fuel chemistry in large-scale computations [J]. Prog. Energ. Combust., 2009, 35: 192-215.
|
24 |
Lu T F , Yoo C S , Chen J H , et al . Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis [J]. J. Fluid Mech., 2010, 652: 45-64.
|
25 |
Kazakov A , Chaos M , Zhao Z W , et al . Computational singular perturbation analysis of two-stage ignition of large hydrocarbons [J]. J. Phys. Chem. A, 2006, 110: 7003-7009.
|
26 |
Acharya V S , Bothien M R , Lieuwen T C . Non-linear dynamics of thermoacoustic eigen-mode interactions[J]. Combust. Flame, 2018, 194: 309-321.
|
27 |
Dodoulas I A , Navarro-Martinez S . Analysis of extinction in a non-premixed turbulent flame using large eddy simulation and the chemical explosion mode analysis [J]. Combust. Theor. Model., 2015, 19: 107-129.
|
28 |
Kooshkbaghi M , Frouzakis C E , Boulouchos K , et al . n-Heptane/air combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions [J]. Combust. Flame, 2015, 162: 3166-3179.
|
29 |
Lam H . Model reductions with special CSP data [J]. Combust. Flame, 2013, 160: 2707-2711.
|
30 |
Goussis D A . Model reduction: when singular perturbation analysis simplifies to partial equilibrium approximation [J]. Combust. Flame, 2015, 162: 1009-1018.
|
31 |
Tingas E A , Kyritsis D C , Goussis D A . Autoignition dynamics of DME/air and EtOH/air homogeneous mixtures [J]. Combust. Flame, 2015, 162: 3263-3276.
|
32 |
Seydel R . Practical Bifurcation and Stability Analysis [M]. 3rd ed. New York: Springer Verlag Press, 2010.
|