CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 450-459.DOI: 10.11949/j.issn.0438-1157.20181129
• Process system engineering • Previous Articles Next Articles
Chengzhen NI1(),Wenli DU1,2(),Guihua HU2
Received:
2018-10-08
Revised:
2018-10-26
Online:
2019-02-05
Published:
2019-02-05
Contact:
Wenli DU
通讯作者:
杜文莉
作者简介:
<named-content content-type="corresp-name">倪城振</named-content>(1994—),男,硕士研究生,<email>779893036@qq.com</email>|杜文莉(1974—),女,博士,教授,<email>wldu@ecust.edu.cn</email>
基金资助:
CLC Number:
Chengzhen NI, Wenli DU, Guihua HU. Impact of turbulence model in coupled simulation of ethylene cracking furnace[J]. CIESC Journal, 2019, 70(2): 450-459.
倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型的影响分析[J]. 化工学报, 2019, 70(2): 450-459.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181129
Item | Parameters |
---|---|
furnace segment | |
length (x-direction)/m | 18.94 |
width (y-direction)/m | 3.56 |
height (z-direction)/m | 13.707 |
number of floor burners | 36 |
number of wall burners | 48 |
firing condition | |
fuel gas ?ow rate in bottom/(kg/s) | 1.2439 |
fuel gas ?ow rate in side/(kg/s) | 0.2025 |
oxygen excess/% (vol) | 2 |
fuel composition/%(mass) | |
CH4 | 97.686 |
H2 | 0.516 |
CO | 0.897 |
C2H4 | 0.899 |
reactor coils | |
number of reactor tubes | 24 |
number of passes | 2 |
inlet tube diameter×103/m | 64 |
outlet tube diameter×103/m | 121 |
thickness of tube×103/m | 6.5 |
feed rate/(kg/s) | 11.11 |
steam dilution/(kg/kg) | 0.6 |
coil inlet temperature/K | 883 |
coil outlet pressure/kPa | 206 |
Table 1 Cracking furnace structure size and operating conditions
Item | Parameters |
---|---|
furnace segment | |
length (x-direction)/m | 18.94 |
width (y-direction)/m | 3.56 |
height (z-direction)/m | 13.707 |
number of floor burners | 36 |
number of wall burners | 48 |
firing condition | |
fuel gas ?ow rate in bottom/(kg/s) | 1.2439 |
fuel gas ?ow rate in side/(kg/s) | 0.2025 |
oxygen excess/% (vol) | 2 |
fuel composition/%(mass) | |
CH4 | 97.686 |
H2 | 0.516 |
CO | 0.897 |
C2H4 | 0.899 |
reactor coils | |
number of reactor tubes | 24 |
number of passes | 2 |
inlet tube diameter×103/m | 64 |
outlet tube diameter×103/m | 121 |
thickness of tube×103/m | 6.5 |
feed rate/(kg/s) | 11.11 |
steam dilution/(kg/kg) | 0.6 |
coil inlet temperature/K | 883 |
coil outlet pressure/kPa | 206 |
项目 | 工业值 | 标准 k-ε模型 | Realizable k-ε模型 | RNG k-ε模型 |
---|---|---|---|---|
出口油气温度/K | 1108 | 1102.8 | 1104.6 | 1099.6 |
最大管壁温度/K | 1247.6 | 1251.9 | 1253.5 | 1260.4 |
过剩氧含量/%(vol) | 2 | 1.81 | 1.90 | 1.90 |
炉管油气压降/MPa | 0.0433 | 0.0350 | 0.0366 | 0.0355 |
P/E | 0.68 | 0.72 | 0.68 | 0.0.74 |
乙烯收率/%(mass) | 30.143 | 29.86 | 29.74. | 29.46 |
Table 2 Comparison of simulated and industrial values between different turbulences
项目 | 工业值 | 标准 k-ε模型 | Realizable k-ε模型 | RNG k-ε模型 |
---|---|---|---|---|
出口油气温度/K | 1108 | 1102.8 | 1104.6 | 1099.6 |
最大管壁温度/K | 1247.6 | 1251.9 | 1253.5 | 1260.4 |
过剩氧含量/%(vol) | 2 | 1.81 | 1.90 | 1.90 |
炉管油气压降/MPa | 0.0433 | 0.0350 | 0.0366 | 0.0355 |
P/E | 0.68 | 0.72 | 0.68 | 0.0.74 |
乙烯收率/%(mass) | 30.143 | 29.86 | 29.74. | 29.46 |
Gk | ——由平均速度梯度引起的湍流动能 |
---|---|
Ui | ——速度矢量 |
Y | ——时间τ*后细微尺度内组分i的质量分数 |
μt | ——湍流黏性系数 |
ξ* | ——细微尺度长度分数 |
ρ | ——流体密度 |
σε | ——湍流Prandtl数 |
τ* | ——反应时间尺度 |
Gk | ——由平均速度梯度引起的湍流动能 |
---|---|
Ui | ——速度矢量 |
Y | ——时间τ*后细微尺度内组分i的质量分数 |
μt | ——湍流黏性系数 |
ξ* | ——细微尺度长度分数 |
ρ | ——流体密度 |
σε | ——湍流Prandtl数 |
τ* | ——反应时间尺度 |
1 | 陈滨. 乙烯工学[M]. 北京: 化学工业出版社, 1997: 63-67. |
ChenB. Ethylene Engineering[M]. Beijing: Chemical Industry Press, 1997: 63-67. | |
2 | 韩云龙, 章名耀, 程相杰. 乙烯裂解炉内燃烧、传热与裂解反应的模拟计算[J]. 石油学报(石油加工), 2006, 22(6): 63-68. |
HanY L, ZhangM Y, ChengX J. Numerical simulation on combustion, heat transfer and naphtha pyrolysis reactions in ethylene cracking furnace[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2006, 22(6): 63-68. | |
3 | 蔡树棠, 刘宇陆. 湍流理论[M]. 上海: 上海交通大学出版社, 1993. |
CaiS T, LiuY L. Turbulence Theory[M]. Shanghai: Shanghai Jiao Tong University Press, 1993. | |
4 | 王烨. 封闭腔内湍流自然对流换热及工程应用[M]. 北京: 科学出版社, 2015. |
WangY. Turbulent Natural Convection Heat Transfer in Enclosed Cavity and Its Engineering Application [M]. Beijing: Science Press, 2015. | |
5 | 李鹏飞, 徐敏义. 精通CFD仿真与案例实战[M]. 北京: 人民邮电出版社, 2017. |
LiP F, XuM Y. Proficient in CFD Simulation and Case Combat [M]. Beijing: Posts and Telecom Press, 2017. | |
6 | GasserH, MohamedP. Predictions of CO and NOx emissions from steam cracking furnaces using GRI 2.11 detailed reaction mechanism — a CFD investigation[J]. Computers and Chemical Engineering, 2013, 58(45): 68-83. |
7 | 王国清. 裂解炉数值模拟技术进展[J]. 石油化工, 2010, 39(5): 476-481. |
WangG Q. Progress in numerical simulation technology of cracking furnace[J]. Petrochemical Technology, 2010, 39(5): 476-481. | |
8 | HabibiA, MerciB, HeynderickxG J. Multiscale modeling of turbulent combustion and NOx emission in steam crackers[J]. AIChE Journal, 2007, 53(9): 2384-2398. |
9 | ShihT H, LiouW W. A new k-ε eddy viscosity model for high Reynolds number turbulent flows: model development and validation[J]. Comput Fluids, 1995, 24 (3) : 227-238. |
10 | ArmanB, RabasT J. Two-layer-model predictions of heat transfer inside enhanced tubes[J]. Number Heat Transfer, Part A, 1994, 25: 727-741. |
11 | 肖志祥, 李凤蔚, 鄂琴. 三种湍流模型模拟能力的对比 [J]. 西北工业大学学报, 2002, 20(3) : 351-355. |
XiaoZ X, LiF W, E Q. Comparison of three turbulence model simulation capabilities[J]. Journal of Northwestern Polytechnical University, 2002, 20(3): 351-355. | |
12 | 陈银. 涡耗散概念燃烧模型耦合简化机理的多维数值模拟[D]. 合肥: 中国科学技术大学, 2015. |
ChenY. Multi-dimensional numerical simulation based on eddy dissipation concept combustion model coupling reduced chemical reaction[D]. Hefei: University of Science and Technology of China, 2015. | |
13 | 刘时涛. SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308-1318. |
LiuS T. Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱ industrial ethylene [J]. CIESC Journal, 2011, 62(5): 1308-1318. | |
14 | 王菁. 大型燃气乙烯裂解炉燃烧过程的模拟研究 [D].天津: 天津大学, 2016. |
WangJ. The simulation of the combustion process for the large-scale ethylene cracking furnace [D]. Tianjin: Tianjin University, 2016. | |
15 | 毕文涛, 郭英锋. 乙烯裂解炉管内裂解反应的CFD模拟[J]. 天津科技大学学报, 2008, 23(1): 49-52. |
BiW T, GuoY F. CFD simulation of cracking reaction in ethylene cracking furnace[J]. Journal of Tianjin University of Science and Technology, 2008, 23(1): 49-52. | |
16 | DenisonM K, WebbB W. A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers[J]. Journal of Heat Transfer, 1993, 115(4), 1002–1013. |
17 | 蓝兴英, 高金森, 徐春明. 乙烯裂解炉内传递和反应过程综合数值模拟研究(Ⅲ): 炉膛内燃烧和传热过程的数值模拟[J]. 石油学报(石油加工), 2004, 20(1): 46-48. |
LanX Y, GaoJ S, XuC M. Numerical simulation study on the transfer and reaction process in ethylene pyrolyzer(Ⅲ): Numerical simulation of combustion and heat transfer process in furnace[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2004, 20(1): 46-48. | |
18 | 孙明波, 白雪松. 湍流燃烧火焰面模式理论及应用 [M]. 北京: 科学出版社, 2014. |
SunM B, BaiX S. Theory and Application of Turbulent Combustion Flame Surface Mode [M]. Beijing: Science Press, 2014. | |
19 | ChenQ. Comparison of different k-ε models for indoor air flow computations[J]. Numerical Heat Transfer, Part B, 1995, 28: 353-369. |
20 | 蒲宁. 航空发动机燃烧室数值仿真中湍流模型的比较研究 [D]. 沈阳: 沈阳航空工业学院, 2009. |
PuN. Comparison of turbulence models for aero-engine combustor numerical simulation[D]. Shenyang: Shenyang Aerospace University, 2009. | |
21 | StefanidisG D, MerciB. CFD simulations of steam cracking furnaces using detailed combustion mechanisms[J]. Computers and Chemical Engineering, 2006, 30: 635-649. |
22 | HuG H, CarlM S. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors[J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2453-2465. |
23 | 申海女, 何细藕. 计算流体力学在裂解炉设计上的应用[J]. 乙烯工业, 2004, 16(4): 34-37. |
ShenH N, HeX O. Application of computational fluid dynamics in design of cracking furnace[J]. Journal of Ethylene Industry, 2004, 16(4): 34-37. | |
24 | ZhangY, QianF. Impact of flue gas radiative properties and burner geometry in furnace simulations[J]. AIChE Journal , 2015, 61(3): 936-954. |
25 | WuH L, PengX F, YeP, et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2007, 50(6): 1186-1195. |
26 | TakamasaT, HazukuT, HibikiT. Experimental study of gas-liquid two-phase flow affected by wall surface wettability[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1593-1602. |
27 | YangZ, PengX F, YeP. Numerical and experimental investigation of two phase flow during boiling in a coiled tube [J]. International Journal of Heat and Mass Transfer, 2008, 51(5): 1003-1016. |
28 | DziakJ, KubalaM. Heat and mass transfer during thin-film evaporation of two-component liquid solutions [C]//20th European Symposium on Computer Aided Process Engineering. 2010: 613-626. |
29 | 王力军, 蔡久菊. 湍流燃烧混合对NOx生成的影响[J]. 冶金能源, 2003, 22(4): 22-24. |
WangL J, CaiJ J. Effect of mixture in turbulent combustion on NOx formation[J]. Energy for Metallurgical Industry, 2003, 22(4): 22-24. | |
30 | LiuZ, BiQ, GuoY, et al. Heat transfer characteristics during subcooled flow boiling of a kerosene kind hydrocarbon fuel in a 1mm diameter channel[J]. International Journal of Heat and Mass Transfer, 2012, 55(20): 4987-4995. |
31 | HuG H, WangH G. Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners[J]. Computers and Chemical Engineering, 2012, 38(38): 24-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||