CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 883-891.DOI: 10.11949/j.issn.0438-1157.20181168
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Xin ZHOU1(),Ledong DENG1,Hong WANG1,2(
),Xun ZHU1,2,Rong CHEN1,2,Qiang LIAO1,2,Yudong DING1,2
Received:
2018-10-09
Revised:
2018-12-19
Online:
2019-03-05
Published:
2019-03-05
Contact:
Hong WANG
周鑫1(),邓乐东1,王宏1,2(
),朱恂1,2,陈蓉1,2,廖强1,2,丁玉栋1,2
通讯作者:
王宏
作者简介:
<named-content content-type="corresp-name">周鑫</named-content>(1995—),男,硕士研究生,<email>1525435144@qq.com</email>|王宏(1978—),男,博士,教授,<email>hongwang@cqu.edu.cn</email>
基金资助:
CLC Number:
Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior[J]. CIESC Journal, 2019, 70(3): 883-891.
周鑫, 邓乐东, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 圆柱壁面上液滴凝固相变对其运动行为的影响[J]. 化工学报, 2019, 70(3): 883-891.
Fig.2 Impacting morphological comparisons between experimental images [30] and simulation results after water droplet impacting on cold flat substrate
1 | 金传芳, 郑国璋, 韩军青. 2008年初我国南方低温雨雪冰冻灾害分析[J]. 山西师范大学学报(自然科学版), 2009, 23(2): 94-98. |
JinC F, ZhengG Z, HanJ Q, et al. Analysis of the freezing disasters of low temperature rain and snow in southern China in early 2008[J]. Journal of Shanxi Normal University (Natural Science Edition), 2009, 23(2): 94-98. | |
2 | 胡琴, 于洪杰, 徐勋建, 等. 分裂导线覆冰扭转特性分析及等值覆冰厚度计算[J]. 电网技术, 2016, 40(11): 3615-3620. |
HuQ, YuH J, XuX J, et al. Study on torsion characteristic and equivalent ice thickness of bundle conductors[J]. Power System Technology, 2016, 40(11): 3615-3620. | |
3 | 殷水清, 赵珊珊, 王遵娅, 等. 全国电线结冰厚度分布及等级预报模型[J]. 应用气象学报, 2009, 20(6): 722-728. |
YinS Q, ZhaoS S, WangJ Y, et al. National wire icing thickness distribution and grade prediction model[J]. Journal of Applied Meteorological Science, 2009, 20(6): 722-728. | |
4 | 范瑶, 王宏, 朱恂, 等. 壁面曲率及过冷度对液滴铺展特性的影响[J]. 化工学报, 2016, 67(7): 2709-2717. |
FanY, WangH, ZhuX, et al. Effect of curvature and undercooling degree of surface on behavior of droplet spreading [J]. CIESC Journal, 2016, 67(7): 2709-2717. | |
5 | WorthingtonA M . A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate [J]. Proceedings of the Royal Society of London, 1876, 25(171-178): 261-272. |
6 | MaoT, KuhnD C S, TranH. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169-2179. |
7 | HeungsupP, CarrW W, ZhuJ, et al. Single drop impaction on a solid surface[J]. AIChE Journal, 2010, 49(10): 2461-2471. |
8 | RiobooR, MarengoM, TropeaC. Time evolution of liquid drop impact onto solid, dry surfaces[J]. Experiments in Fluids, 2002, 33(1): 112-124. |
9 | HungL S, YaoS C. Experimental investigation of the impaction of water droplets on cylindrical objects[J]. International Journal of Multiphase Flow, 1999, 25(8): 1545-1559. |
10 | LiangG T. Special phenomena of droplet impact on an inclined wetted surface with experimental observation[J]. Acta Physica Sinica, 2013, 62(8): 084707. |
11 | 梁超, 王宏, 朱恂, 等. 液滴撞击不同浸润性壁面动态过程的数值模拟[J]. 化工学报, 2013, 64(8): 2745-2751. |
LiangC, WangH, ZhuX, et al. Numerical simulation of droplet impact on surfaces with different wettability[J]. CIESC Journal, 2013, 64(8): 2745-2751. | |
12 | 杨宝海, 王宏, 朱恂, 等. 速度对液滴撞击超疏水壁面行为特性的影响[J]. 化工学报, 2012, 63(10): 3027-3033. |
YangB H, WangH, ZhuX, et al. Effect of velocity on behavior of droplet impacting on superhydrophobic surface[J]. CIESC Journal, 2012, 63(10): 3027-3033. | |
13 | LiangG, GuoY, YangY, et al. Liquid sheet behaviors during a drop impact on wetted cylindrical surfaces[J]. International Communications in Heat and Mass Transfer, 2014, 54(5): 67-74. |
14 | FlemingsM C. Solidification Processing[M]. New York: McGraw-Hill, 1974. |
15 | SchiaffinoS, SoninA A. Molten droplet deposition and solidification at low Weber numbers[J]. Physics of Fluids, 1998, 9(11): 3172-3187. |
16 | JungS, TiwariM K, DoanN V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615. |
17 | AlaviS, Passandideh-FardM, MostaghimiJ. Simulation of semi-molten particle impacts including heat transfer and phase change[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1278-1293. |
18 | YaoY, LiC, ZhangH, et al. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52-62. |
19 | 冷梦尧, 常士楠, 丁亮. 不同浸润性冷表面上水滴碰撞结冰的数值模拟[J]. 化工学报, 2016, 67(7): 2784-2792. |
LengM Y, ChangS N, DingL, et al. Numerical simulation of droplet impinging and freezing on cold surfaces with different wettability[J]. CIESC Journal, 2016, 67(7): 2784-2792. | |
20 | LiangG, YangY, GuoY, et al. Rebound and spreading during a drop impact on wetted cylinders[J]. Experimental Thermal and Fluid Science, 2014, 52(52): 97-103. |
21 | LiuY, AndrewM, JingL, et al. Symmetry breaking in drop bouncing on curved surfaces[J]. Nature Communications, 2015, 6: 10034. |
22 | AndrewM, LiuY, YeomansJ. Variation of the contact time of droplets bouncing on cylindrical ridges with ridge size[J]. Langmuir, 2017, 33(30): 7583-7587. |
23 | LiH, RoismanI V, TropeaC. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 133. |
24 | YaoY, LiC, TaoZ, et al. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface[J]. Applied Thermal Engineering, 2018, 137: 83-92. |
25 | YangG, GuoK, LiN. Experimental study on the freezing mechanism of super-cooled water droplets impacting on a wire[J]. Journal of Refrigeration, 2011, 32(5): 37-41. |
26 | 杨国敏, 郭开华, 李宁. 过冷水滴碰撞导线表面结冰机理的实验研究[J]. 制冷学报, 2011, 32(5): 37-41. |
YangG M, GuoK H, LiN, et al. Experimental study on the freezing mechanism of super-cooled water droplets impacting on a wire[J]. Journal of Refrigeration, 2011, 32(5): 37-41. | |
27 | SussmanM, PuckettE G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337. |
28 | VollerV R, PrakashC. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. |
29 | LiangG , ShenS , MuX . Numerical analysis and insight of drop impacting dynamics upon a liquid film[J]. Acta Mechanica, 2017, 228(2): 385-400. |
30 | DingB, WangH, ZhuX, et al. How supercooled superhydrophobic surfaces affect dynamic behaviors of impacting water droplets[J]. International Journal of Heat and Mass Transfer, 2018, 124: 1025-1032. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 343
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 604
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||