CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1375-1382.DOI: 10.11949/j.issn.0438-1157.20181277
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jie CHENG1(),Yajun GUO1(),Teng WANG2,Miao GUI2,Zhaohui LIU2,Zhiqiang SUI2
Received:
2018-10-31
Revised:
2019-01-08
Online:
2019-04-05
Published:
2019-04-05
Contact:
Yajun GUO
程洁1(),郭亚军1(),王腾2,桂淼2,刘朝辉2,随志强2
通讯作者:
郭亚军
作者简介:
<named-content content-type="corresp-name">程洁</named-content>(1994—),女,硕士研究生,<email>794706968@qq.com</email>|郭亚军(1966—),女,博士,副教授,<email>879400635@qq.com</email>
基金资助:
CLC Number:
Jie CHENG, Yajun GUO, Teng WANG, Miao GUI, Zhaohui LIU, Zhiqiang SUI. Void fraction distribution of vapor-water two-phase flow in vertical tube bundles using gamma densitometer[J]. CIESC Journal, 2019, 70(4): 1375-1382.
程洁, 郭亚军, 王腾, 桂淼, 刘朝辉, 随志强. γ射线法测量高压管束间气液两相流的截面含气率分布[J]. 化工学报, 2019, 70(4): 1375-1382.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181277
测量参数 | 量程 | 测量仪表 | 精度 |
---|---|---|---|
质量流量/(kg/h) | 0~3000 | RHEONIK 质量流量计 | 0.05% |
进口压力/MPa | 0~68 | Rosemount3051压力变送器 | 0.1% |
温度/℃ | -200~400 | Φ3 mm T型热电偶 | ±0.4℃ |
预热段功率/kW | 0~700 | 电压电流变送器 | 0.1% |
Table 1 Measuring instruments parameters
测量参数 | 量程 | 测量仪表 | 精度 |
---|---|---|---|
质量流量/(kg/h) | 0~3000 | RHEONIK 质量流量计 | 0.05% |
进口压力/MPa | 0~68 | Rosemount3051压力变送器 | 0.1% |
温度/℃ | -200~400 | Φ3 mm T型热电偶 | ±0.4℃ |
预热段功率/kW | 0~700 | 电压电流变送器 | 0.1% |
测量参数 | 不确定度/% |
---|---|
进口压力/MPa | 0.23 |
质量流速/(kg/(m2 | 0.26 |
热力学干度 | 5.02 |
体积含气率 | 5.97 |
截面含气率 | 6.75 |
Table 2 Summary of uncertainties
测量参数 | 不确定度/% |
---|---|
进口压力/MPa | 0.23 |
质量流速/(kg/(m2 | 0.26 |
热力学干度 | 5.02 |
体积含气率 | 5.97 |
截面含气率 | 6.75 |
文献模型 | 经验关联式 | 适用条件 |
---|---|---|
Miropolskii[ | D=6.7~17.7 mm管束 | |
Smith[ | D=6~38 mm单管,G=650~2500 kg/(m2?s) | |
Armand[ | D=56 mm单管,G=2000 kg/(m2?s) |
Table 3 Void fraction correlation discussed in this study
文献模型 | 经验关联式 | 适用条件 |
---|---|---|
Miropolskii[ | D=6.7~17.7 mm管束 | |
Smith[ | D=6~38 mm单管,G=650~2500 kg/(m2?s) | |
Armand[ | D=56 mm单管,G=2000 kg/(m2?s) |
1 | 吕俊复. 气液两相流动与沸腾传热[M]. 北京: 科学出版社, 2017: 457. |
LyuJ F. Gas-liquid Two-phase Flow and Boiling Heat Transfer[M]. Beijing: Science Press, 2017: 457. | |
2 | 阎昌琪. 气液两相流[M]. 哈尔滨: 哈尔滨工程大学出版社, 2007. |
YanC Q. Gas-liquid Two-phase Flow[M]. Harbin: Harbin Engineering University Press, 2007. | |
3 | WangF, JinN D, WangD Y, et al. Measurement of gas phase characteristics in bubbly oil-gas-water flows using bi-optical fiber and high-resolution conductance probes[J]. Experimental Thermal and Fluid Science, 2017, 88: 361-375. |
4 | RoshaniN. A high performance gas-liquid two-phase flow meter based on gamma-ray attenuation and scattering[J].Nuclear Science & Techniques, 2017, 28(11): 169. |
5 | 赵安, 韩云峰, 张宏鑫, 等. 气液两相流段塞流持气率快关阀法优化设计[J]. 化工学报, 2016, 67(4): 1159-1168. |
ZhaoA, HanY F, ZhangH X, et al. Optimal design for measuring gas holdup in gas-liquid two-phase slug flow using quick closing valve method[J]. CIESC Journal, 2016, 67(4): 1159-1168. | |
6 | SardeshppandeM V, HarinarayanS, RanadeV V. Void fraction measurement using electrical capacitance tomography and high speed photography[J]. Chemical Engineering Research and Design, 2015, 94: 1-11. |
7 | DragomirescuA, PincovschiI, MiuM. Assessment of global void fraction in a gas-liquid stirred vessel by digital image processing[J]. Energy Procedia, 2017, 112: 217-224. |
8 | JiaJ, BabatundeA, WangM. Void fraction measurement of gas-liquid two-phase flow from differential pressure[J]. Flow Measurement & Instrumentation, 2015, 41: 75-80. |
9 | 唐人虎, 陈听宽, 罗毓珊, 等. 高温高压下用光纤探针测量截面含汽率的实验研究[J]. 化工学报, 2001, 52(6): 560-563. |
TangR H, ChenT K, LuoY S, et al. Void fraction measurement by using optical probes at high temperature and high pressure[J]. Journal of Chemical Industry and Engineering (China), 2001, 52(6): 560-563. | |
10 | NazemiE, FefhhiS A H. Precise void fraction measurement in two-phase flows independent of the flow regime using gamma-ray attenuation[J]. Nuclear Engineering & Technology, 2016, 48(1): 64-71. |
11 | ZhaoY, BiQ C, HuR C. Recognition and measurement in the flow pattern and void fraction of gas-liquid two-phase flow in vertical upward pipes using the gamma densitometer[J]. Applied Thermal Engineering, 2013, 60(1/2): 398-410. |
12 | ZhaoY, BiQ C, BiY J, et al. Void fraction measurement in steam-water two-phase flow using the gamma ray attenuation under high pressure and high temperature evaporating conditions[J]. Flow Measurement and Instrumentation, 2016, 49: 18-30. |
13 | 吕海财, 毕勤成, 赵于, 等.伽马射线法测量亚临界汽-水两相流截面含气率[C]//中国工程热物理学会. 2015. |
LyuH C, BiQ C, ZhaoY, et al. Measurement of void fraction in subcritical steam water two-phase flow by gamma ray method[C]//Chinese Society of Engineering Thermophysics. 2015. | |
14 | PanY Z, MaY G, HuangS F, et al. A new model for volume fraction measurements of horizontal high-pressure wet gas flow using gamma-based techniques[J]. Experimental Thermal and Fluid Science, 2018, 96: 311-320. |
15 | 徐国平, 王启杰. 气液两相流沿垂直向下横掠水平管束时的流型及其转变特性[J]. 化工学报, 1993, 44(2): 250-253. |
XuG P, WangQ J. Gas-liquid two-phase flow patterns and their transition characteristics in vertical up and downflow across a horizontal tube bundle[J]. Journal of Chemical Industry and Engineering (China), 1993, 44(2): 250-253. | |
16 | 陈斌, 傅宇晨, 郭烈锦, 等. 水平管束间气液两相流局部含气率分布的实验研究[J]. 化工学报, 2003, 54(3): 316-320. |
ChenB, FuY C, GuoL J, et al. Experimental investigation of distribution of void fraction between horizontal tube bundle[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(3): 316-320. | |
17 | 洪文鹏, 王宣宇, 陈柄君. 气液两相流绕管束流动压降特性实验研究[J]. 东北电力大学学报, 2012, 32(6): 67-71. |
HongW P, WangX Y, ChenB J. Experimental investigation of gas-liquid two-phase pressure drop across tube bundle[J]. Journal of Northeast Dianli University, 2012, 32(6): 67-71. | |
18 | ClarkC, GriffithsM, ChenS W, et al. Experimental study of void fraction in an 8×8 rod bundle at low pressure and low liquid flow conditions[J]. International Journal of Multiphase Flow, 2014, 62: 87-100. |
19 | KanizawaF T, RibatskiG. Two-phase flow patterns across triangular tube bundles for air-water upward flow[J]. International Journal of Multiphase Flow, 2016, 80(80): 43-56. |
20 | OzakiT, SuzukiR, HibikiT, et al. Development of drift-flux model based on 8*8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions[J]. Nucl. Sci. Technol., 2013, 50: 563-580. |
21 | OzakiT, HibikiT. Drift-flux model for rod bundle geometry[J]. Prog. Nucl. Energy, 2015, 83: 229-247. |
22 | HibikiT, MaoK, OzakiT. Development of void fraction-quality correlation for two-phase flow in horizontal and vertical tube bundles[J]. Progress in Nuclear Energy, 2017, 97: 38-52. |
23 | SmithS L. Void fraction in two-phase flow: a correlation based upon an equal velocity heat model[J]. Proc. Instn. Mech. Engrs., 1968, 184: 647-664. |
24 | 朱晓静, 毕勤成. 垂直上升内螺纹管中高压汽-水两相流截面含汽率的测量[J]. 西安交通大学学报, 2015, 49(3): 50-55. |
ZhuX J, BiQ C. Measurement of void fraction of high pressure steam water two-phase flow in vertical upward ribbed tube[J]. Journal of Xi an Jiaotong University, 2015, 49(3): 50-55. | |
25 | HookerH H, PopperG F. A gamma-ray attenuation method for void fraction determinations in experimental boiling heat transfer test facilities[R]. Argonne National Laboratory, 1958. |
26 | ColemanH W, SteeleW G. Engineering application of experimental uncertainty analysis[J]. AIAA Journal, 2015, 33(33): 1888-1896. |
27 | CorreJ M L, BergmannU C, HallehnA, et al. Measurements of local two-phase flow parameters in fuel bundle under BWR operating conditions[J]. Nuclear Engineering & Design, 2017, 336(2018): 15-23. |
28 | GrahamB W. One-dimensional Two-phase Flow[M]. New York: McGraw-Hill, 1969. |
29 | ArmandA A. The resistance during the movement of a two-phase system in horizontal pipes[J]. Izv Vses Teploteck Inst, 1946, 828(1): 16-23. |
30 | 胡日查, 刘春龙, 毕勤成, 等. γ射线法测量亚临界汽-水两相流截面含气率的实验研究[J]. 热能动力工程, 2015, 30(6): 842-847. |
HuR C, LiuC L, BiQ C, et al. Experimental study of the γ-ray method for measuring the gas content in a cross section with a subcritical steam-water two-phase flow[J]. Journal of Engineering for Thermal Energy & Power, 2015, 30(6): 842-847. | |
31 | MiropolakiiZ L, SnelobeP E, KalamesebeA E. Void fraction of water-steam mixture flow with or without heat transfer[J]. Journal of Nuclear Science & Technology, 1971, 5(19): 374-379. |
32 | 黄承德. 锅炉水动力学及锅炉内传热[M]. 北京: 机械工业出版社, 1982. |
HuangC D. Boiler Hydrodynamics and Internal Heat Transfer[M]. Beijing: China Machine Press, 1982. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||