CIESC Journal ›› 2019, Vol. 70 ›› Issue (S1): 193-201.DOI: 10.11949/j.issn.0438-1157.20181282
• Energy and environmental engineering • Previous Articles Next Articles
Daofeng MEI1,2(),Haibo ZHAO3,Shuiping YAN1,2()
Received:
2018-10-31
Revised:
2018-12-03
Online:
2019-03-31
Published:
2019-03-31
Contact:
Shuiping YAN
通讯作者:
晏水平
作者简介:
<named-content content-type="corresp-name">梅道锋</named-content>(1986—),男,博士,讲师,<email>dmei@mail.hzau.edu.cn</email>|晏水平(1980—),男,博士,教授,<email>yanshp@mail.hzau.edu.cn</email>
基金资助:
CLC Number:
Daofeng MEI, Haibo ZHAO, Shuiping YAN. Thermodynamics simulation of biogas fueled chemical looping reforming for H2 generation using NiO/Ca2Al2SiO7[J]. CIESC Journal, 2019, 70(S1): 193-201.
梅道锋, 赵海波, 晏水平. 基于NiO/Ca2Al2SiO7的沼气自热化学链重整制氢热分析动力学模拟[J]. 化工学报, 2019, 70(S1): 193-201.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181282
组分类别 | h0i / (kJ?mol-1) | ai / (J?(mol?K)-1) | bi / (J?(mol?K)-1) | ci / (J?(mol?K)-1) |
---|---|---|---|---|
NiO | -212.51 | 56.05 | -1.03×10-2 | 8.50×10-6 |
Ni | 15.42 | 20.38 | 1.59×10-2 | 8.50×10-6 |
Ca2Al2SiO7 | -3904.86 | 237.58 | 8.50×10-3 | -2.00×10-5 |
CH4 | -74.87 | 19.86 | 6.04×10-2 | -1.07×10-5 |
H2O① | -241.83 | 30.41 | 9.54×10-3 | 1.18×10-6 |
CO2 | -393.51 | 33.81 | 2.32×10-2 | -4.65×10-6 |
CO | -110.54 | 26.88 | 6.94×10-3 | -8.21×10-7 |
H2 | 0 | 29.41 | -1.55×10-3 | 2.35×10-6 |
O2 | 0 | 27.65 | 7.99×10-3 | -1.37×10-6 |
N2 | 0 | 27.33 | 5.13×10-3 | 3.97×10-8 |
Table 1 Values of h0, ai, bi and ci for component i in gaseous and solid phases
组分类别 | h0i / (kJ?mol-1) | ai / (J?(mol?K)-1) | bi / (J?(mol?K)-1) | ci / (J?(mol?K)-1) |
---|---|---|---|---|
NiO | -212.51 | 56.05 | -1.03×10-2 | 8.50×10-6 |
Ni | 15.42 | 20.38 | 1.59×10-2 | 8.50×10-6 |
Ca2Al2SiO7 | -3904.86 | 237.58 | 8.50×10-3 | -2.00×10-5 |
CH4 | -74.87 | 19.86 | 6.04×10-2 | -1.07×10-5 |
H2O① | -241.83 | 30.41 | 9.54×10-3 | 1.18×10-6 |
CO2 | -393.51 | 33.81 | 2.32×10-2 | -4.65×10-6 |
CO | -110.54 | 26.88 | 6.94×10-3 | -8.21×10-7 |
H2 | 0 | 29.41 | -1.55×10-3 | 2.35×10-6 |
O2 | 0 | 27.65 | 7.99×10-3 | -1.37×10-6 |
N2 | 0 | 27.33 | 5.13×10-3 | 3.97×10-8 |
项目 | 值 |
---|---|
氧载体组成/%(质量) | NiO: 10~100, Ca2Al2SiO7: 0~90 |
沼气组成/%(体积) | CH4: 60, CO2: 40 |
氧载体循环流率Fs/(kg?s-1) | 0.2~10.2 |
氧载体转化率变化ΔXs | 0.1~1.0 |
FR进口处水蒸气浓度 | 37.5~78.2 |
AR温度TAR/K | 1150~2500 |
FR温度TFR/K | 1150 |
Table 2 Main parameters and values used for simulations
项目 | 值 |
---|---|
氧载体组成/%(质量) | NiO: 10~100, Ca2Al2SiO7: 0~90 |
沼气组成/%(体积) | CH4: 60, CO2: 40 |
氧载体循环流率Fs/(kg?s-1) | 0.2~10.2 |
氧载体转化率变化ΔXs | 0.1~1.0 |
FR进口处水蒸气浓度 | 37.5~78.2 |
AR温度TAR/K | 1150~2500 |
FR温度TFR/K | 1150 |
热量符号 | 热量值/MWth | 描述 | 合计 |
---|---|---|---|
Q1 | 0.05 | 吸热 | |
Q2 | 0.12 | 吸热 | |
Q3 | 0.04 | 吸热 | 0.21 |
Q4 | 0.07 | 放热 | |
Q5 | 0.13 | 放热 | |
Q6 | 0.06 | 放热 | 0.26 |
Table 3 Distribution of absorbed heat and recoverable heat during typical CLRa
热量符号 | 热量值/MWth | 描述 | 合计 |
---|---|---|---|
Q1 | 0.05 | 吸热 | |
Q2 | 0.12 | 吸热 | |
Q3 | 0.04 | 吸热 | 0.21 |
Q4 | 0.07 | 放热 | |
Q5 | 0.13 | 放热 | |
Q6 | 0.06 | 放热 | 0.26 |
1 | MattissonT, LyngfeltA. Applications of chemical-looping combustion with capture of CO2[C]//Second Nordic Minisymposium on Carbon Dioxide Capture and Storage. Göteborg, Sweden, 2001. |
2 | 黄振, 何方, 赵坤, 等. 基于晶格氧的甲烷化学链重整制合成气[J]. 化学进展, 2012, 24(8): 1599-1609. |
HuangZ, HeF, ZhaoK, et al. Synthesis gas production by chemical-looping reforming of methane using lattice oxygen[J]. Progress in Chemistry, 2012, 24(8): 1599-1609. | |
3 | OrtizM, AbadA, de DiegoL F, et al. Optimization of hydrogen production by chemical-looping auto-thermal reforming working with Ni-based oxygen-carriers[J]. Int. J. Hydrogen Energy, 2011, 36: 9663-9672. |
4 | 阳绍军, 徐祥, 田文栋. 基于化学链燃烧的吸收剂引导的焦炉煤气水蒸气重整制氢过程模拟[J]. 化工学报, 2007, 58(9): 2363-2368. |
YangS J, XuX, TianW D. Simulation for hydrogen production from sorption enhanced coke-oven gas steam reforming based on chemical looping combustion[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(9): 2363-2368. | |
5 | 李孔斋, 王华, 魏永刚, 等. 晶格氧部分氧化甲烷制合成气[J]. 化学进展, 2008, 20(9): 1306-1314. |
LiK Z, WangH, WeiY G, et al. Partial oxidation of methane to synthesis gas using lattice oxygen[J]. Progress in Chemistry, 2008, 20(9): 1306-1314. | |
6 | LuoM, YiY, WangS Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable Sustainable Energy Rev., 2018, 81: 3186-3214. |
7 | 曾亮, 巩金龙. 化学链重整直接制氢技术进展[J]. 化工学报, 2015, 66(8): 2854-2862. |
ZengL, GongJ L. Advances in chemical looping reforming for direct hydrogen production[J]. CIESC Journal, 2015, 66(8): 2854-2862. | |
8 | ZafarQ, MattissonT, GevertB. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-Redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Ind. Eng. Chem. Res., 2005, 44: 3485-3496. |
9 | 何映龙, 于敦喜, 雷体蔓, 等. 铁基氧载体化学链CO2重整CH4方法制备合成气[J]. 化工学报, 2016, 67(12): 5222-5228. |
HeY L, YuD X, LeiT M, et al. Chemical looping CO2/CH4 reforming using Fe-based oxygen carrier for syngas production[J]. CIESC Journal, 2016, 67(12): 5222-5228. | |
10 | 王博, 刘永卓, 王东营, 等. 废弃活性炭化学链气化制富氢合成气[J]. 化工学报, 2017, 68(9): 3541-3550. |
WangB, LiuY Z, WangD Y, et al. Chemical looping gasification of waste activated carbon for hydrogen-enriched syngas production[J]. CIESC Journal, 2017, 68(9): 3541-3550. | |
11 | WeiG Q, HeF, HuangZ, et al. Chemical-looping reforming of methane using iron based oxygen carrier modified with low content nickel[J]. Chin. J. Chem., 2014, 32: 1271-1280. |
12 | RydénM, LyngfeltA, MattissonT. Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor[J]. Fuel, 2006, 85: 1631-1641. |
13 | de DiegoL F, OrtizM, García-LabianoF, et al. Hydrogen production by chemical-looping reforming in a circulating fluidized bed reactor using Ni-based oxygen carriers[J]. J. Power Sources, 2009, 192: 27-34. |
14 | AdánezJ, AbadA, García-LabianoF, et al. Progress in chemical-looping combustion and reforming technologies[J]. Prog. Energy Combust. Sci., 2012, 38: 215-282. |
15 | PröllT, Bolhàr-NordenkampfJ, KolbitschP, et al. Syngas and a separate nitrogen/argon stream via chemical looping reforming —a 140 kW pilot plant study[J]. Fuel, 2010, 89: 1249-1256. |
16 | ZhaoX, ZhouH, SikarwarV S, et al. Biomass-based chemical looping technologies: the good, the bad and the future[J]. Energy Environ. Sci., 2017, 10: 1885-1910. |
17 | MendiaraT, García-LabianoF, AbadA, et al. Negative CO2 emissions through the use of biofuels in chemical looping technology: a review[J]. Appl. Energy, 2018, 232: 657-684. |
18 | JiangB, DouB L, SongY C, et al. Hydrogen production from chemical looping steam reforming of glycerol by Ni-based oxygen carrier in a fixed-bed reactor[J]. Chem. Eng. J., 2015, 280: 459-467. |
19 | DouB L, ZhangH, CuiG M, et al. Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: sorbent to catalyst ratio dependencies[J]. Energy Convers. Manage., 2018, 155: 243-252. |
20 | ZhaoH B, GuoL, ZouX X. Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier[J]. Appl. Energy, 2015, 157: 408-415. |
21 | GuoL, ZhaoH B, ZhengC G. Synthesis gas generation by chemical-looping reforming of biomass with natural copper ore as oxygen carrier[J]. Waste Biomass Valorization, 2015, 6: 81-89. |
22 | OmoniyiO A, DupontV. Chemical looping steam reforming of acetic acid in a packed bed reactor[J]. Appl. Catal., B, 2018, 226: 258-268. |
23 | ZinR M, RossA B, JonesJ M, et al. Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping[J]. Bioresour. Technol., 2015, 176: 257-266. |
24 | WangW J, CaoY Y. A combined thermodynamic and experimental study on chemical-looping ethanol reforming with carbon dioxide capture for hydrogen generation[J]. Int. J. Energy Res., 2013, 37: 25-34. |
25 | García-LabianoF, García-DíezE, de DiegoL F, et al. Syngas/H2 production from bioethanol in a continuous chemical-looping reforming prototype[J]. Fuel Process. Technol., 2015, 137: 24-30. |
26 | García-DíezE, García-LabianoF, de DiegoL F, et al. Optimization of hydrogen production with CO2 capture by autothermal chemical-looping reforming using different bioethanol purities[J]. Appl. Energy, 2016, 169: 491-498. |
27 | 殷上轶, 宋涛. CO2气氛下准东煤化学链燃烧特性研究[J]. 化工学报, 2018, 69(9): 3954-3964. |
YinS Y, SongT. Zhundong coal chemical looping combustion performance using CO2 as gasification agent[J]. CIESC Journal, 2018, 69(9): 3954-3964. | |
28 | TianX, ZhaoH B, MaJ C. Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion[J]. Appl. Energy, 2017, 204: 242-253. |
29 | BarinI. Thermochemical Data of Pure Substances[M]. Weiheim: Wiley-VCH, 2004. |
30 | SatterfieldC N. Heterogeneous Catalysis in Industrial Practice[M]. Malabar: Krieger Publishing Company, 1991. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[4] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[8] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[9] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[10] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[11] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[12] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[13] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
[14] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||