CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1309-1317.DOI: 10.11949/j.issn.0438-1157.20181298
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hongxia CHEN(),Yuan SUN,Yifei GONG,Linbin HUANG
Received:
2018-11-05
Revised:
2019-01-19
Online:
2019-04-05
Published:
2019-04-05
Contact:
Hongxia CHEN
通讯作者:
陈宏霞
作者简介:
陈宏霞(1980—),女,博士,副教授,<email>hxchen@ncepu.edu.cn</email>
基金资助:
CLC Number:
Hongxia CHEN, Yuan SUN, Yifei GONG, Linbin HUANG. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70(4): 1309-1317.
陈宏霞, 孙源, 宫逸飞, 黄林滨. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181298
1 | 纪献兵, 徐进良. 流体在超轻多孔金属泡沫中的流动和换热特性[J]. 化工学报, 2009, 60(1): 21-27. |
JiX B, XuJ L. Fluid flow and heat transfer characteristics in ultra light porous metal foam[J]. CIESC Journal, 2009, 60(1): 21-27. | |
2 | 朱禹, 胡海涛, 丁国良, 等. 制冷剂/油在泡沫金属加热表面池沸腾换热特性[J]. 化工学报, 2011, 62(2): 329-335. |
ZhuY, HuH T, DingG L, et al. Nucleate pool boiling heat transfer characteristics of regrigerant/oil mixture on metal foam covers[J]. CIESC Journal, 2011, 62(2): 329-335. | |
3 | 逯国强, 韩吉田, 孔令健, 等. 卧式螺旋管内流动换热壁温分布特性[J]. 化工学报, 2014, 65(S1): 152-156. |
LuG Q, HanJ T, KongL J, et al. Wall temperature distribution characteristics of flow and heat transfer inside horizontal helically-coiled tube[J]. CIESC Journal, 2014, 65(S1): 152-156. | |
4 | XuJ, JiX, YangW, et al. Modulated porous wick evaporator for loop heat pipes: experiment[J]. International Journal of Heat and Mass Transfer, 2014, 72: 163-176. |
5 | DasS, SahaB, BhaumikS. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure[J]. Experimental Thermal and Fluid Science, 2017, 81: 454-465. |
6 | GheitaghyA M, SaffariH, GhasimiD, et al. Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement[J]. Applied Thermal Engineering, 2017, 113: 1097-1106. |
7 | WangY Q, MoD C, LyuS S. Enhanced pool boiling heat transfer on mono and multi-layer micro-nano bi-porous copper surfaces[C]//ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. Biopolis, Singapore, 2016: V001T04A005. |
8 | ByonC, ChoiS, KimS J. Critical heat flux of bi-porous sintered copper coatings in FC-72[J]. International Journal of Heat and Mass Transfer, 2013, 65: 655-661. |
9 | 郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12) : 3798-3804. |
GuoZ Y, XuP, WangY H, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12): 3798-3804. | |
10 | ZupančičM, SteinbücherM, GregorčičP, et al. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces[J]. Applied Thermal Engineering, 2015, 91: 288-297. |
11 | LuM C, HuangC H, HuangC T, et al. A modified hydrodynamic model for pool boiling CHF considering the effects of heater size and nucleation site density[J]. International Journal of Thermal Sciences, 2015, 91: 133-41. |
12 | RaineyK N, YouS M. Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72[J]. Journal of Heat Transfer, 2000, 122(3): 509-516. |
13 | ClarkH B, StrengeP S, WestwaterJ W. Active sites for nucleate boiling[J]. Chemical Engineering Progress Symposium, 1959, 56(29): 103-110. |
14 | ShojiM, TakagiY. Bubbling features from a single artificial cavity[J]. International Journal of Heat and Mass Transfer, 2001, 44(14): 2763-2776. |
15 | HsuY Y. On the size range of active nucleation cavities on a heating surface[J]. Journal of Heat Transfer, 1962, 84(3): 207-213. |
16 | KimS H, LeeG C, KangJ Y, et al. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147. |
17 | DongL, QuanX, ChengP. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196. |
18 | HondaH, TakamastuH, WeiJ J. Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness[J]. Journal of Heat Transfer, 2002, 124(2): 383. |
19 | HutterC, KenningD B R, SefianeK, et al. Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors[J]. Experimental Thermal and Fluid Science, 2010, 34(4): 422-433. |
20 | LieY M, KeJ H, ChangW R, et al. Saturated flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3862-3876. |
21 | YuC K, LuD C, ChengT C. Pool boiling heat transfer on artificial micro-cavity surfaces in dielectric fluid FC-72[J]. Journal of Micromechanics and Microengineering, 2006, 16(10): 2092-2099. |
22 | ZhaoY H, MasuokaT, TsurutaT. Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3189-3197. |
23 | 刁彦华, 赵耀华. R-141b池沸腾气泡行为的可视化及传热研究[C]// 2004年传热传质学学术会议. 吉林, 2004: 043288. |
DiaoY H, ZhaoY H. Visual study on bubble dynamics and heat transfer mechanism of pool boiling of R-141b[C]//Heat Mass Transfer Conference of China. Jilin, 2004: 043288. | |
24 | 刁彦华, 赵耀华, 王秋良. R-113池沸腾气泡行为的可视化及传热机理[J]. 化工学报, 2005, 56(2): 227-234. |
DiaoY H, ZhaoY H, WangQ L. Bubble dynamics and heat transfer mechanism of pool boiling of R-113[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(2): 227-234. | |
25 | GerardiC, BuongiornoJ, HuL W, et al. Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4185-4192. |
26 | GerardiC B J, HuL W, MckrellT. Infrared thermometry study of nanofluid pool boiling phenomena[J]. Nano Scale Research Letters, 2011, 6(1): 232. |
27 | JungJ, KimS J, KimJ. Observations of the critical heat flux process during pool boiling of FC-72[J]. Journal of Heat Transfer, 2014, 136(4): 041501. |
28 | DhillonN S, BuongiornoJ, VaranasiK K. Critical heat flux maxima during boiling crisis on textured surfaces[J]. Nature Communications, 2015, 6: 8247. |
29 | GolobicI, ZupancicM. Wall-temperature distributions of nucleate pool boiling surfaces vs. boiling curves: a new approach[J]. International Journal of Heat and Mass Transfer, 2016, 99: 541-547. |
30 | ChenH X, SunY, HuangL B, et al. Nucleation and sliding growth of boiling bubbles on locally heated silicon surfaces[J]. Applied Thermal Engineering, 2018, 143: 1068-1078. |
31 | ZuberN. Hydrodynamic Aspects of Boiling Heat Transfer[M].United States: AEC Report, 1959. |
[1] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[2] | Jianxun CHEN, Jinping LIU, Xiongwen XU, Yinhao YU. Numerical simulation and performance optimization of a new loop gravity heat pipe [J]. CIESC Journal, 2023, 74(2): 721-734. |
[3] | Yiran WANG, Chaoyang GUAN, Xiang GAO, Hongxia CHEN. Experimental study on boiling dynamics modulation by porous foam deaeration board [J]. CIESC Journal, 2022, 73(11): 4948-4956. |
[4] | HOU Zhaoning, WANG Lin, YAN Xiaona, LI Xiuzhen, WANG Zhanwei, LIANG Kunfeng. Numerical simulation of bubble dynamics under multi-ultrasonic vibrators [J]. CIESC Journal, 2021, 72(S1): 362-370. |
[5] | LIN Shiquan, ZHAO Yaxin, LYU Zhongyuan, LAI Zhancheng, HU Haitao. Effect of hydrophilicity and hydrophobicity on pool boiling heat transfer characteristics on metal foam [J]. CIESC Journal, 2021, 72(S1): 295-301. |
[6] | Hailiang CAO, Hongfei ZHANG, Qianlong ZUO, Qi AN, Ziyang ZHANG, Hongbei LIU. Study on pool boiling heat transfer performance of trapezoidal microchannel surface [J]. CIESC Journal, 2021, 72(8): 4111-4120. |
[7] | Nini YUAN,Hongcun BAI,Mei AN,Xiude HU,Qingjie GUO. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: experiments and theoretical simulations [J]. CIESC Journal, 2020, 71(11): 5294-5302. |
[8] | Shuai MOU, Changying ZHAO, Zhiguo XU. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface [J]. CIESC Journal, 2019, 70(4): 1291-1301. |
[9] | Qiong HU, Yan WANG, Rong DAI, Jianjun SUN, Xiaoqing ZHENG. Performance study of arc groove dry gas seal based on orderly micro-structure [J]. CIESC Journal, 2019, 70(3): 1006-1015. |
[10] | HUANG Ruilian, ZHAO Changying, XU Zhiguo. Bubble departure in gradient metal foam under pool boiling conditions [J]. CIESC Journal, 2018, 69(7): 2890-2898. |
[11] | WANG Xin, LI Xiaolei, LI Meihui, SANG Xunyuan, WANG Taiyang. Analyze acoustic emission signals from moving bubbles by clustering method [J]. CIESC Journal, 2018, 69(7): 2964-2971. |
[12] | CHEN Hanzhi, YAO Yuan, GONG Maoqiong, CHEN Gaofei, ZOU Xin, DONG Xueqiang, SHEN Jun. Experimental study on bubble departure diameter of ethane saturated nucleate pool boiling [J]. CIESC Journal, 2018, 69(4): 1419-1427. |
[13] | JI Wentao, ZHANG Dingcai, ZHAO Chuangyao, HE Yaling, TAO Wenquan. Pool boiling heat transfer outside horizontal tubes at higher heat flux [J]. CIESC Journal, 2016, 67(S1): 28-32. |
[14] | WEI Jinjia, ZHANG Yonghai. Review of enhanced boiling heat transfer over micro-pin-finned surfaces [J]. CIESC Journal, 2016, 67(1): 97-108. |
[15] | MO Dongchuan, ZHANG Hui, LÜ Shushen. Pool boiling experiment on TiO2 nanotube array surface [J]. CIESC Journal, 2014, 65(S1): 308-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||