CIESC Journal ›› 2019, Vol. 70 ›› Issue (2): 564-571.DOI: 10.11949/j.issn.0438-1157.20181352
• Process system engineering • Previous Articles Next Articles
Zhiqiang GENG1,2(),Meng XU1,2,Qunxiong ZHU1,2,Yongming HAN1,2(),Xiangbai GU1,2,3
Received:
2018-11-16
Revised:
2018-11-26
Online:
2019-02-05
Published:
2019-02-05
Contact:
Yongming HAN
耿志强1,2(),徐猛1,2,朱群雄1,2,韩永明1,2(),顾祥柏1,2,3
通讯作者:
韩永明
作者简介:
<named-content content-type="corresp-name">耿志强</named-content>(1973—),男,博士,教授,<email>gengzhiqiang@mail.buct.edu.cn</email>|韩永明(1987—),男,博士,副教授,<email>hanym@mail.buct.edu.cn</email>
基金资助:
CLC Number:
Zhiqiang GENG, Meng XU, Qunxiong ZHU, Yongming HAN, Xiangbai GU. Research and application of soft measurement model for complex chemical processes based on deep learning[J]. CIESC Journal, 2019, 70(2): 564-571.
耿志强, 徐猛, 朱群雄, 韩永明, 顾祥柏. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181352
参数名称 | 数 值 |
---|---|
输入维度 | [None, 10, 36] |
时间步幅 | 10 |
FC1节点数目 | 50 |
LSTM节点数目 | 50 |
LSTM层数 | 1 |
FC2节点数目 | 100 |
各激活函数 | |
误差函数 | MSE |
训练数据(组) | 93 |
测试数据(组) | 70 |
Table 1 Parameters of Network model
参数名称 | 数 值 |
---|---|
输入维度 | [None, 10, 36] |
时间步幅 | 10 |
FC1节点数目 | 50 |
LSTM节点数目 | 50 |
LSTM层数 | 1 |
FC2节点数目 | 100 |
各激活函数 | |
误差函数 | MSE |
训练数据(组) | 93 |
测试数据(组) | 70 |
项目 | RMSE | ARGE |
---|---|---|
训练 | 0.071 | 0.119 |
测试 | 0.166 | 0.182 |
Table 2 Training results of proposed model
项目 | RMSE | ARGE |
---|---|---|
训练 | 0.071 | 0.119 |
测试 | 0.166 | 0.182 |
项目 | MLP | ELM | 普通LSTM | 本文方法 |
---|---|---|---|---|
训练 | 0.44 | 0.34 | 0.268 | 0.119 |
测试 | 0.53 | 0.49 | 0.282 | 0.182 |
Table 3 Contrast results for soft measurement in PTA process
项目 | MLP | ELM | 普通LSTM | 本文方法 |
---|---|---|---|---|
训练 | 0.44 | 0.34 | 0.268 | 0.119 |
测试 | 0.53 | 0.49 | 0.282 | 0.182 |
1 | 汪银宏. 我国精对苯二甲酸(PTA)市场分析[J]. 聚酯工业, 2016, 29(5): 5-7. |
WangY H. Analysis of PTA market in China[J]. Polyester Industry, 2016, 29(5): 5-7. | |
2 | 崔培崇, 王学雷, 马增良. 基于数据包络分析的乙烯能效分析系统[J]. 计算机与应用化学, 2010, 27(9): 1182-1186. |
CuiP C, WangX L, MaZ L. An energy efficiency analysis system for ethylene production based on DEA[J]. Computers and Applied Chemistry, 2010, 27(9): 1182-1186. | |
3 | HanY, GengZ, GuX, et al. Energy efficiency analysis based on DEA integrated ISM[J]. Engineering Applications of Artificial Intelligence, 2015, 45(C): 80-89. |
4 | 朱群雄, 陈希, 贺彦林,等. 基于PCA-DEA的乙烯装置能效分析[J]. 化工学报, 2015, 66(1): 278-283. |
ZhuQ X, ChenX, HeY L, et al. Energy efficiency analysis for ethylene plant based on PCA-DEA[J]. CIESC Journal, 2015, 66(1): 278-283. | |
5 | DongG S, RenW. A real-time fault monitoring system for the dynamic chemical process based on PCA[J]. Computers & Applied Chemistry, 2010, 27(10): 1357-1360. |
6 | GengZ Q, HanY M, ZhangY, et al. Data fusion-based extraction method of energy consumption index for the ethylene industry[C]//Life System Modeling and Intelligent Computing, International Conference on Life System Modeling and Simulation, LSMS 2010, and International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010. Wuxi, China, 2010: 84-92. |
7 | HanY M, GengZ Q, QuY X, et al. Linear optimization fusion model based on fuzzy C-means: case study of energy efficiency evaluation in ethylene product plants[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 347-355. |
8 | HuangG B, ZhuQ Y, SiewC K. Extreme learning machine: a new learning scheme of feedforward neural networks[J]. Proc. Int. Joint Conf. Neural Netw., 2004, 2: 985-990. |
9 | 裘日辉. 基于极限学习机的复杂工业过程故障识别研究及应用[D]. 杭州: 浙江大学, 2016. |
QiuR H. Fault identification for complex industrial processes based on extreme learning machine[D]. Hangzhou:Zhejiang University, 2016. | |
10 | 李诗瑶, 周良, 刘虎. 基于深度极限学习机的危险源识别算法HIELM[J]. 计算机科学, 2017, 44(5): 89-94. |
LiS Y, ZhouL, LiuH. Hazard identification algorithm based on deep extreme learning machine[J]. Computer Science, 2017, 44(5): 89-94. | |
11 | SipahiS, TimorM. The analytic hierarchy process and analytic network process: an overview of application[J]. Management Decision, 2010, 48(5): 775-808. |
12 | GengZ, DongJ, ChenJ, et al. A new self-organizing extreme learning machine soft sensor model and its applications in complicated chemical processes[J]. Engineering Applications of Artificial Intelligence, 2017, 62(C): 38-50. |
13 | PengD, XuY, WangY. Soft-sensing in complex chemical process based on a sample clustering extreme learning machine model[J]. IFAC PapersOnLine, 2015, 48(8): 801-806. |
14 | 贺彦林, 王晓, 朱群雄. 基于主成分分析-改进的极限学习机方法的精对苯二甲酸醋酸含量软测量[J]. 控制理论与应用, 2015, 32(1): 80-85. |
HeY L, WangX, ZhuQ X. Modeling of acetic acid content in purified terephthalic acid solvent column using principal component analysis based improved extreme learning machine[J]. Control Theory & Applications, 2015, 32(1): 80-85. | |
15 | GengZ Q, QinL, HanY M, et al. Energy saving and prediction modeling of petrochemical industries: a novel ELM based on FAHP[J]. Energy, 2017, 122: 350-362 |
16 | GengZ, ChenJ, HanY. Energy efficiency prediction based on PCA-FRBF model: a case study of ethylene industries[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(8):1763-1773. |
17 | 蓝艇, 童楚东, 史旭华. 变量加权型主元分析算法及其在故障检测中的应用[J]. 化工学报, 2017, 68(8): 3177-3182. |
LanT, TongC D, ShiX H. Variable weighted principal component analysis algorithm and its application in fault detection[J]. CIESC Journal, 2017, 68(8): 3177-3182. | |
18 | 朱群雄, 石晓赟, 顾祥柏, 等. 基于时序数据融合的乙烯装置能效价值研究及应用[J]. 化工学报, 2010, 61(10): 2620-2626. |
ZhuQ X, ShiX Y, GuX B, et al. Time-series data fusion and its application to energy efficiency value for ethylene plants[J]. CIESC Journal, 2010, 61(10): 2620-2626. | |
19 | HeY L, XuY, GengZ Q, et al. Soft sensor of chemical processes with large numbers of input parameters using auto-associative hierarchical neural network[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 138-145. |
20 | HanY M, GengZ Q, ZhuQ X. Energy optimization and prediction of complex petrochemical industries using an improved artificial neural network approach integrating data envelopment analysis[J]. Energy Conversion & Management, 2016, 124: 73-83. |
21 | JahediG, ArdehaliM M. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system[J]. Energy Conversion & Management, 2012, 54(1): 47-56. |
22 | TaghavifarH, MardaniA. Applying a supervised ANN (artificial neural network) approach to the prognostication of driven wheel energy efficiency indices[J]. Energy, 2014, 68(8): 651-657. |
23 | TeichT, RoesslerF, KretzD, et al. Design of a prototype neural network for smart homes and energy efficiency[J]. Procedia Engineering, 2014, 69(1): 603-608. |
24 | GersF, SchmidhuberJ, CumminsF. Learning to forget: continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471. |
25 | WangY, HuangM, ZhuX, et al. Attention-based LSTM for aspect-level sentiment classification[C]// Conference on Empirical Methods in Natural Language Processing. 2016:606-615. |
26 | 张冲. 基于Attention-Based LSTM模型的文本分类技术的研究[D]. 南京: 南京大学, 2016. |
ZhangC. Text classification based on attention-based LSTM model[D]. Nanjing: Nanjing University, 2016. | |
27 | XuK, XieL, YaoK. Investigating LSTM for punctuation prediction[C]// International Symposium on Chinese Spoken Language Processing. IEEE, 2017: 1-5. |
28 | TsinghuaW K, HuangD, YangF, et al. Soft sensor development and applications based on LSTM in deep neural networks[C]//Computational Intelligence (SSCI), 2017 IEEE Symposium Series on. IEEE. 2017: 1-6. |
29 | ZhaoH, SunS, JinB. Sequential fault diagnosis based on LSTM neural network[J]. IEEE Access, 2018, 6: 12929-12939. |
30 | ErtlP, LewisR, MartinE, et al. In silico generation of novel, drug-like chemical matter using the LSTM neural network[J]. arXiv preprint arXiv:1712.07449, 2017. |
31 | 欧芬兰, 郭金泉, 钟剑锋,等. 基于平稳小波变换的悬臂梁微小缺陷检测方法研究[J]. 机电工程, 2015, 32(6): 762-767. |
OuF L, GuoJ Q, ZhongJ F, et al. Small crack identification in cantilever beams by stationary wavelet transform[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(6): 762-767. | |
32 | 范小龙, 谢维成, 蒋文波, 等. 一种平稳小波变换改进阈值函数的电能质量扰动信号去噪方法[J]. 电工技术学报, 2016, 31(14):219-226. |
FanX L, XieW C, JiangW B, et al. An improved threshold function method for power quality disturbance signal de-noising based on stationary wavelet transform[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 219-226. | |
33 | 房贻广, 颜普, 刘武, 等. 基于平稳小波变换和亮度序的局部特征描述子[J]. 计算机工程, 2017,(11): 272-276,280. |
FangY G, YanP, LiuW, et al. Local feature descriptor based on stationary wavelet transform and intensity order[J]. Computer Engineering, 2017,(11): 272-276,280. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[3] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[4] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[5] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[6] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[9] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[10] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[11] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[12] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[13] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[14] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[15] | Xuejin GAO, Kun CHENG, Huayun HAN, Huihui Gao, Yongsheng QI. Fault diagnosis of chillers using central loss conditional generative adversarial network [J]. CIESC Journal, 2022, 73(9): 3950-3962. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||