CIESC Journal ›› 2019, Vol. 70 ›› Issue (5): 1923-1931.DOI: 10.11949/j.issn.0438-1157.20181452
• Energy and environmental engineering • Previous Articles Next Articles
Yongjian WU1(),Chunhuan LUO1,2,Lin WEI1,Tanjin ZHU1,Qingquan SU1,2()
Received:
2018-12-05
Revised:
2019-02-11
Online:
2019-05-05
Published:
2019-05-05
Contact:
Qingquan SU
武永健1(),罗春欢1,2,魏琳1,朱探金1,苏庆泉1,2()
通讯作者:
苏庆泉
作者简介:
<named-content content-type="corresp-name">武永健</named-content>(1992—),男,博士研究生,<email>wuyongjian@xs.ustb.edu.cn</email>|苏庆泉(1961—),男,博士,教授,<email>suqingquan@ustb.edu.cn</email>
基金资助:
CLC Number:
Yongjian WU, Chunhuan LUO, Lin WEI, Tanjin ZHU, Qingquan SU. Utilization of converter off-gas based on chemical-looping combustion[J]. CIESC Journal, 2019, 70(5): 1923-1931.
武永健, 罗春欢, 魏琳, 朱探金, 苏庆泉. 基于化学链燃烧的转炉放散煤气利用研究[J]. 化工学报, 2019, 70(5): 1923-1931.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20181452
Fig.4 In reduction reaction for three OCs at 2000 h-1, outlet CO concentration versus reaction time at 450℃(a), and X C O , 2 versus reaction temperature(b)
Fig.5 Outlet CO concentration and X R , t versus time in reduction reaction of CuO/Al2O3 at 350℃ and 4000 h-1(a), and outlet O2 concentration and X O , t versus time in oxidation reaction of Cu/Al2O3 at 350℃ and 159 h-1(b)
循环次数 | 比表面积/(m2?g-1) | 孔容/(ml?g-1) | 平均孔径/nm | CO化学吸附量/(ml?g-1) |
---|---|---|---|---|
0 | 164.78 | 0.376 | 9.12 | 1.60 |
3000 | 156.81 | 0.382 | 9.87 | 1.43 |
6000 | 145.52 | 0.375 | 10.41 | 1.15 |
9000 | 131.44 | 0.381 | 12.15 | 0.54 |
12000 | 114.54 | 0.389 | 13.60 | 0.32 |
Table 1 Specific surface area, pore volume, average pore size and CO adsorption for CuO/Al2O3 under different cycle times
循环次数 | 比表面积/(m2?g-1) | 孔容/(ml?g-1) | 平均孔径/nm | CO化学吸附量/(ml?g-1) |
---|---|---|---|---|
0 | 164.78 | 0.376 | 9.12 | 1.60 |
3000 | 156.81 | 0.382 | 9.87 | 1.43 |
6000 | 145.52 | 0.375 | 10.41 | 1.15 |
9000 | 131.44 | 0.381 | 12.15 | 0.54 |
12000 | 114.54 | 0.389 | 13.60 | 0.32 |
反应 | (kJ·mol-1) | (kJ·mol-1) | |
---|---|---|---|
还原反应 | 2CuO + CO | -154.56 | -146.22 |
Cu2O + CO | -105.38 | -113.80 | |
氧化反应 | 4Cu + O2 | -246.45 | -339.58 |
2Cu2O + O2 | -148.10 | -274.74 |
Table 2 Thermodynamic data for reduction and oxidation reactions
反应 | (kJ·mol-1) | (kJ·mol-1) | |
---|---|---|---|
还原反应 | 2CuO + CO | -154.56 | -146.22 |
Cu2O + CO | -105.38 | -113.80 | |
氧化反应 | 4Cu + O2 | -246.45 | -339.58 |
2Cu2O + O2 | -148.10 | -274.74 |
1 | 赵贤聪, 白皓, 李宏煦, 等 . 钢铁生产过程富余煤气动态优化分配模型[J]. 工程科学学报, 2015, 37(1): 97-105. |
Zhao X C , Bai H , Li H X , et al . Dynamic optimal distribution model of surplus byproduct gases in iron and steel making process[J]. Chinese J. Eng., 2015, 37(1): 97-105. | |
2 | 刘辉, 王雯, 魏晓明, 等 . 工业副产煤气的资源化利用研究进展[J]. 现代化工, 2016, 36(4): 46-52. |
Liu H , Wang W , Wei X M , et al . Research progress of utilization of industrial by-product gas[J]. Mod. Chem. Ind., 2016, 36(4): 46-52. | |
3 | 潘秀兰, 常桂华, 冯士超, 等 . 转炉煤气回收和利用技术的最新进展[J]. 冶金能源, 2010, 29(5): 37-42. |
Pan X L , Chang G H , Feng S C , et al . Recent progress of recovery and utilization technology of converter gas[J]. Energ. Metall. Ind., 2010, 29(5): 37-42. | |
4 | 王永忠, 施锦德 . 转炉煤气节能减排的几种技术措施[J]. 世界钢铁, 2009, 9(4): 39-44. |
Wang Y Z , Shi J D . Several technical measures about energy-saving and emission-reduction of BOF gas[J]. World Iron Steel, 2009, 9(4): 39-44. | |
5 | 于鹏飞, 曾加庆, 林腾昌, 等 . 国内转炉煤气回收概况与研究展望[J]. 铸造技术, 2018, 39(1): 240-245. |
Yu P F , Zeng J Q , Lin T C , et al . General situation and research prospect of converter gas recovery in China[J]. Foundry Technol., 2018, 39(1): 240-245. | |
6 | 尹茂建, 黄伟 . 提高转炉煤气吨钢回收量措施探讨[J]. 冶金动力, 2011, (s 1): 18-19. |
Yin M J , Huang W . Increasing the amount of converter gas recovery per ton of steel[J]. Metall. Power, 2011, (s 1): 18-19. | |
7 | 秦勇 . 提高转炉煤气回收量的研究与应用[J]. 冶金动力, 2013, (3): 27-29. |
Qin Y . Research and application of enhancing converter gas recovery amount[J]. Metall. Power, 2013, (3): 27-29. | |
8 | 王爱华, 蔡九菊, 王鼎, 等 . 转炉煤气回收规律及其影响因素研究[J]. 冶金能源, 2004, 23(4): 52-55. |
Wang A H , Cai J J , Wang D , et al . Research on LDG recovery law and its affecting factors[J]. Energ. Metall. Ind., 2004, 23(4): 52-55. | |
9 | Wang A H , Cai J J , Li X P , et al . Affecting factors and improving measures for converter gas recovery[J]. J. Iron Steel Res. Int., 2007, 14(6): 22-26. |
10 | Li S , Wei X L . Numerical simulation of CO and NO emissions during converter off-gas combustion in the cooling stack[J]. Combust. Sci. Technol., 2013, 185(2): 212-225. |
11 | Li S , Wei X L , Yu L X . Numerical study on NO x /CO emissions in the diffusion flames of high-temperature off-gas of steelmaking converter[J]. Appl. Energ., 2011, 88(4): 1113-1119. |
12 | Sandlobes S , Senk D , Sancho L , et al . In-situ measurement of CO- and CO2-concentrations in BOF off-gas[J]. Steel Res. Int., 2011, 82(6): 632-637. |
13 | Maruoka N , Akiyama T . Exergy recovery from steelmaking off-gas by latent heat storage for methanol production[J]. Energy, 2006, 31(10/11): 1632-1642. |
14 | 高强, 贾琼 . 转炉煤气热值波动大影响用户使用的分析[J]. 冶金能源, 2011, 30(5): 38-40. |
Gao Q , Jia Q . Analysis on the fluctuation of the heat value for converter gas[J]. Energ. Metall. Ind., 2011, 30(5): 38-40. | |
15 | Nandy A , Loha C , Gu S , et al . Present status and overview of chemical looping combustion technology[J]. Renew. Sust. Energ. Rev., 2016, 59: 597-619. |
16 | 覃吴, 李渠, 董长青, 等 . Co-Fe2O3 纳米载氧体作用下CO 化学链燃烧富集CO2 [J]. 化工学报, 2014, 65(8): 3136-3143. |
Qin W , Li Q , Dong C Q , et al . CO chemical looping combustion using Co-Fe2O3 nano oxygen carrier for enrichment of CO2 [J]. CIESC Journal, 2014, 65(8): 3136-3143. | |
17 | Zhang H , Hong H , Jiang Q Q , et al . Development of a chemical-looping combustion reactor having porous honeycomb chamber and experimental validation by using NiO/NiAl2O4 [J]. Applied Energy, 2018, 211: 259-268. |
18 | Bhavsar S , Isenberg N , More A , et al . Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion[J]. Appl. Energ., 2016, 168: 236-247. |
19 | Adánez J , Abad A , Garcia-Labiano F , et al . Progress in chemical-looping combustion and reforming technologies[J]. Prog. Energ. Combust. Sci., 2012, 38(2): 215-282. |
20 | Li J , Zhang H D , Gao Z P , et al . CO2 capture with chemical looping combustion of gaseous fuels: an overview[J]. Energ. Fuel, 2017, 31(4): 3475-3524. |
21 | Song Q , Liu W , Bohn C D , et al . A high performance oxygen storage material for chemical looping processes with CO2 capture[J]. Energ. Environ. Sci., 2013, 6: 288-298. |
22 | Tian Q , Che L X , Ding B , et al . Performance of Cu-Fe-based oxygen carrier in a CLC process based on fixed bed reactors[J]. Greenh. Gases, 2017, 7(4): 731-744. |
23 | Gallucci F , Hamers H P , van Zanten M , et al . Experimental demonstration of chemical looping combustion of syngas in packed bed reactors with ilmenite[J]. Chem. Eng. J., 2015, 274: 156-168. |
24 | Hwang J H , Baek J I , Ryu H J , et al . Development of MgMnO3- δ as an oxygen carrier material for chemical looping combustion[J]. Fuel, 2018, 231: 290-296. |
25 | 彭松, 曾德望, 陈超, 等 . 具有自载体功能的CoFeAlO4载氧体化学链燃烧反应特性[J]. 化工学报, 2018, 69(1): 515-522. |
Peng S , Zeng D W , Chen C , et al . Chemical looping combustion performance of CoFeAlO4 oxygen carrier with self-supported function[J]. CIESC Journal, 2018, 69(1): 515-522. | |
26 | Zheng X M , Su Q Q , Mi W L . Effect of steam reforming on methane-fueled chemical looping combustion with Cu-based oxygen carrier[J]. Int. J. Hydrogen Energ., 2014, 39(17): 9158-9168. |
27 | Arjmand M , Leion H , Mattisson T , et al . Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels[J]. Appl. Energ., 2014, 113: 1883-1894. |
28 | Perez-Vega R , Abad A , Garcia-Labiano F , et al . Chemical looping combustion of gaseous and solid fuels with manganese iron mixed oxide as oxygen carrier[J]. Energ. Convers. Manage., 2018, 159: 221-231. |
29 | Kwak B S , Park N K , Ryu H J , et al . Reduction and oxidation performance evaluation of manganese-based iron, cobalt, nickel, and copper bimetallic oxide oxygen carriers for chemical-looping combustion[J]. Appl. Therm. Eng., 2018, 128: 1273-1281. |
30 | Jiang S X , Shen L H , Wu J , et al . The investigations of hematite-CuO oxygen carrier in chemical looping combustion[J]. Chem. Eng. J., 2017, 317: 132-142. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[10] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[13] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[14] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[15] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||