CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1409-1419.DOI: 10.11949/j.issn.0438-1157.20181466
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Caiyun WEI(),Jingjing TAN(
),Xiaoli XIA,Yongxiang ZHAO(
)
Received:
2018-12-10
Revised:
2019-01-07
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jingjing TAN,Yongxiang ZHAO
通讯作者:
谭静静,赵永祥
作者简介:
<named-content content-type="corresp-name">卫彩云</named-content>(1994—),女,硕士研究生,<email>cywei216@126.com</email>|谭静静(1985—),女,博士,讲师,<email>tanjingjing@sxu.edu.cn</email>|赵永祥(1965—),男,博士,教授,<email>yxzhao@sxu.edu.cn</email>
基金资助:
CLC Number:
Caiyun WEI, Jingjing TAN, Xiaoli XIA, Yongxiang ZHAO. Influence of calcination temperature on CuMgAl catalytic performance for hydrogenation of furfuralcohol to pentanediol[J]. CIESC Journal, 2019, 70(4): 1409-1419.
卫彩云, 谭静静, 夏晓丽, 赵永祥. 焙烧温度对CuMgAl催化剂催化糠醇加氢制戊二醇的影响[J]. 化工学报, 2019, 70(4): 1409-1419.
Catalyst | SBET/(m2/g) | Vp/(cm3/g) | Dp/nm | nCu/(mmol/g)① |
---|---|---|---|---|
CMA-300 | 131.03 | 0.69 | 14.13 | 0.32 |
CMA-400 | 220.34 | 1.11 | 13.41 | 0.50 |
CMA-500 | 192.30 | 1.05 | 16.27 | 0.42 |
CMA-600 | 204.19 | 1.09 | 16.31 | 1.07 |
CMA-700 | 171.21 | 1.04 | 19.94 | 0.74 |
Table 1 Textural properties of catalysts
Catalyst | SBET/(m2/g) | Vp/(cm3/g) | Dp/nm | nCu/(mmol/g)① |
---|---|---|---|---|
CMA-300 | 131.03 | 0.69 | 14.13 | 0.32 |
CMA-400 | 220.34 | 1.11 | 13.41 | 0.50 |
CMA-500 | 192.30 | 1.05 | 16.27 | 0.42 |
CMA-600 | 204.19 | 1.09 | 16.31 | 1.07 |
CMA-700 | 171.21 | 1.04 | 19.94 | 0.74 |
Catalyst | Conversion/% | Selevitity/% | Yield/% | ||||
---|---|---|---|---|---|---|---|
2-MF | n-POH | THFA | 1,2-PeD | 1,5-PeD | |||
CMA-300 | 19.89 | 5.90 | 9.57 | 3.80 | 51.11 | 29.62 | 16.06 |
CMA-400 | 35.54 | 3.30 | 7.45 | 7.11 | 52.9 | 29.24 | 29.19 |
CMA-500 | 45.08 | 4.91 | 11.16 | 3.91 | 53.95 | 26.06 | 36.07 |
CMA-600 | 52.44 | 2.06 | 9.06 | 3.40 | 59.27 | 26.21 | 44.83 |
CMA-700 | 34.64 | 5.31 | 10.62 | 3.73 | 30.43 | 29.91 | 27.83 |
Table 2 Selevitity and conversion of CMA-t catalysts in hydrogenation of FFA on 120℃
Catalyst | Conversion/% | Selevitity/% | Yield/% | ||||
---|---|---|---|---|---|---|---|
2-MF | n-POH | THFA | 1,2-PeD | 1,5-PeD | |||
CMA-300 | 19.89 | 5.90 | 9.57 | 3.80 | 51.11 | 29.62 | 16.06 |
CMA-400 | 35.54 | 3.30 | 7.45 | 7.11 | 52.9 | 29.24 | 29.19 |
CMA-500 | 45.08 | 4.91 | 11.16 | 3.91 | 53.95 | 26.06 | 36.07 |
CMA-600 | 52.44 | 2.06 | 9.06 | 3.40 | 59.27 | 26.21 | 44.83 |
CMA-700 | 34.64 | 5.31 | 10.62 | 3.73 | 30.43 | 29.91 | 27.83 |
Fig.11 Relationship between catalytic activities of CMA-t and metal and basic sites for hydrogenation of FFA at 140℃(reaction conditions: FFA: 0.5 g; catalyst: 0.2 g; H2: 4 MPa; isopropyl alcohol 10 g as solvent; T=140℃; t=8 h)FFA—furfuryl alcohol; PeD—1,2+1,5-pentanediol
1 | IborraS, HuberG W, CormaA. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4089. |
2 | VeltyA, IborraS, CormaA. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews, 2007, 107(6): 2411-2502. |
3 | TilmanD, SocolowR, FoleyJ A, et al. Beneficial biofuels—the food, energy, and environment trilemma[J]. Science, 2009, 325(5938): 270-271. |
4 | ZhouB W, SongJ L, ZhangZ R, et al. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2[J]. Green Chemistry, 2017, 19: 1075-1081. |
5 | CuiJ, TanJ, ZhuY, et al. Aqueous hydrogenation of levulinic acid to 1,4-pentanediol over Mo-modified Ru/activated carbon catalyst[J]. ChemSusChem, 2018, 11(8): 1316-1320. |
6 | AdkinsH, ConnorR. The catalytic hydrogenation of organic compounds over copper chromite[J]. Journal of the American Chemical Society, 1931, 53(3): 1091-1095. |
7 | ConnorR, AdkinsH. Hydrogenolysis of oxygenated organic compounds[J]. Journal of the American Chemical Society, 1932, 54(12): 4678-4690. |
8 | ConnorR, FolkersK, AdldnsH. The preparation of copper-chromium oxide catalysts for hydrogenation[J]. Journal of the American Chemical Society, 1932, 54(3): 1138-1145. |
9 | LiX, JiaP, WangT. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS Catalysis, 2016, 6: 7621-7640. |
10 | SunD, SatoS, UedaW, et al. Production of C4 and C5 alcohols from biomass-derived materials[J]. ChemInform, 2016, 47(26): 2579-2597. |
11 | MizugakiT, YamakawaT, NagatsuY, et al. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(10): 2243-2247. |
12 | LiuH, HuangZ, KangH, et al. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1, 2- and 1, 5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis, 2016, 37(5): 700-710. |
13 | SchlafM. Selective deoxygenation of sugar polyols to α, ω-diols and other oxygen content reduced materials—a new challenge to homogeneous ionic hydrogenation and hydrogenolysis catalysis[J]. Dalton Transactions, 2006, 29(39): 4645-4653. |
14 | SatoM, OtabeN, TujiT, et al. Highly-selective and high-speed Claisen rearrangement induced with subcritical water microreaction in the absence of catalyst[J]. Green Chemistry, 2009, 11(6): 763-766. |
15 | ChatterjeeM, KawanamiH, IshizakaT, et al. An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide [J]. Catalysis Science & Technology, 2011, 1(8): 1466-1471. |
16 | XuW J, WangH F, WangY P, et al. Direct catalytic conversion of furfural to 1, 5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chemical Communication, 2011, 47(3): 3924-3926. |
17 | ZhangB, ZhuY, DingG, et al. Selective conversion of furfuryl alcohol to 1, 2-pentanediol over a Ru/MnOx catalyst in aqueous phase[J]. Green Chemistry, 2012, 14(12): 3402-3409. |
18 | CuiJ, TanJ, CuiX, et al. Conversion of xylose to furfuryl alcohol and 2-methylfuran in a continuous fixed-bed reactor[J]. ChemSusChem, 2016, 9(11): 1259-1262. |
19 | XiaS X , NieR F , LuX Y , et al. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: the role of basicity and hydrogen spillover[J]. Journal of Catalysis, 2012, 296(7): 1-11. |
20 | PinnavaiaT J. Intercalated clay catalysts[J]. Science, 1983, 220(4595): 365-371. |
21 | WęgrzynA, Rafalska-ŁasochaA, MajdaD, et al. The influence of mixed anionic composition of Mg-Al hydrotalcites on the thermal decomposition mechanism based on in situ study[J]. Journal of Thermal Analysis & Calorimetry, 2010, 99(2): 443-457. |
22 | ForgionnyA, FierroG, MondragonF, et al. Effect of Mg/Al ratio on catalytic behavior of Fischer-Tropsch cobalt-based catalysts obtained from hydrotalcites precursors[J]. Topic Catalysis, 2016, 59(2/4): 230-240. |
23 | ZhouM, ZengZ, ZhuH, et al. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts: model reaction for upgrading of bio-oil[J]. Journal of Energy Chemistry, 2014, 23(1): 91-96. |
24 | DebeckerD P, GaigneauxE M, G. ExploringBysca, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis[J]. Chemistry, 2009, 15(16): 3920-3935. |
25 | JiangZ, HaoZ P, YuJ J, et al. Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites[J]. Catalysis Letters, 2005, 9(3/4): 157-163. |
26 | ZengY, ZhangT, XuY, et al. Cu/Mg/Al hydrotalcite-like hydroxide catalysts for o-phenylphenol synthesis[J]. Applied Clay Science, 2016, 126: 207-214. |
27 | ParkerL M, MilestoneN B, NewmanR H. The use of hydrotalcite as an anion absorbent[J]. Industrial & Engineering Chemistry Research, 1995, 34(4): 1196-1202. |
28 | Melián-CabreraI, López GranadosM, FierroJ L G. Thermal decomposition of a hydrotalcite-containing Cu-Zn-Al precursor: thermal methods combined with an in situ DRIFT study[J]. Physical Chemistry Chemical Physics, 2002, 4(13): 3122-3127. |
29 | KannanS, RivesV, KnozingerH. High-temperature transformations of Cu-rich hydrotalcites[J]. Journal of Solid State Chemistry, 2004, 177(1): 319-331. |
30 | BonuraG, CordaroM, CannillaC, et al. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Applied Catalysis B: Environmental, 2014, 152/153: 152-161. |
31 | Pérez-Ramı́RezJ, MulG, MoulijnJ A. In situ Fourier transform infrared and laser Raman spectroscopic study of the thermal decomposition of Co-Al and Ni-Al hydrotalcites[J]. Vibrational Spectroscopy, 2001, 27(1): 75-88. |
32 | RousselotI, Tavioto-GuehC, BesseJ P, Synthesis and characterization of mixed Ga/Al-containing layered double hydroxides: study of their basic properties through the Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate, and comparison to other LDHs[J]. International Journal of Inorganic Materials, 1999, 1: 165-174. |
33 | BasąGS, PiwowarskaZ, KowalczykA, et al. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—the influence of Mg/Al ratio and calcination temperature[J]. Applied Clay Science, 2016, 129: 122-130. |
34 | CormaA, FornesV, Martin-ArandaR M, et al. ChemInform abstract: determination of base properties of hydrotalcites: condensation of benzaldehyde with ethyl acetoacetate[J]. Journal of Catalysis, 1992, 134(1): 58-65. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[3] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[4] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
[5] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[6] | Kuan HUANG, Yongde MA, Zhenping CAI, Yanning CAO, Lilong JIANG. Research progress in catalytic hydroconversion of lipid to second-generation biodiesel [J]. CIESC Journal, 2023, 74(1): 380-396. |
[7] | Jiachen SUN, Chunlei PEI, Sai CHEN, Zhijian ZHAO, Shengbao HE, Jinlong GONG. Advances in chemical-looping oxidative dehydrogenation of light alkanes [J]. CIESC Journal, 2023, 74(1): 205-223. |
[8] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
[9] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[10] | Chan WANG, Guoxi XIAO, Xiaoxue GUO, Renwei XU, Yuanyuan YUE, Xiaojun BAO. Green synthesis and application of Beta zeolite prepared via mesoscale depolymerization-reorganization strategy [J]. CIESC Journal, 2022, 73(6): 2690-2697. |
[11] | Feng YE, Gang LI, Xin FU, Xuemei LANG, Yanhong WANG, Shenglong WANG, Jianli ZHANG, Shuanshi FAN. A simulation study on propane dehydrogenation in porous membrane reactors for propylene production [J]. CIESC Journal, 2022, 73(5): 2008-2019. |
[12] | Ke JIN, Chenguang WANG, Longlong MA, Qi ZHANG. Preparation of core-shell nanomaterials and their application in thermocatalytic hydrogenation of CO/CO2 [J]. CIESC Journal, 2022, 73(3): 990-1007. |
[13] | Zheng WANG, Feng XU, Xionglin LUO. Full-cycle optimization of acetylene conversion distribution for acetylene hydrogenation beds-in-series reactor [J]. CIESC Journal, 2022, 73(10): 4551-4564. |
[14] | Xiang GONG, Linsen LI, Zhao JIANG. Employing PdCo/SiO2 catalyst in high activity dehydrogenation reaction of heterocyclic H2 storage carrier [J]. CIESC Journal, 2022, 73(10): 4448-4460. |
[15] | Hongyun YOU, Jingjun LIN, Kaiyue HUANG, Riyang SHU, Zhipeng TIAN, Chao WANG, Ying CHEN. Mechanism of solvent effect on hydrogenation of lignin-derived phenolic compounds [J]. CIESC Journal, 2022, 73(10): 4498-4506. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 582
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 612
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||