CIESC Journal ›› 2022, Vol. 73 ›› Issue (7): 2996-3006.DOI: 10.11949/0438-1157.20220385
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Jun ZHANG1,2,3(),Sheng HU1,4(),Jing GU1,2,3,Haoran YUAN1,2,3(),Yong CHEN1,2,3
Received:
2022-03-17
Revised:
2022-06-22
Online:
2022-08-01
Published:
2022-07-05
Contact:
Haoran YUAN
张军1,2,3(),胡升1,4(),顾菁1,2,3,袁浩然1,2,3(),陈勇1,2,3
通讯作者:
袁浩然
作者简介:
张军(1987—),男,博士,副研究员,基金资助:
CLC Number:
Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol[J]. CIESC Journal, 2022, 73(7): 2996-3006.
张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006.
Add to citation manager EndNote|Ris|BibTeX
组成 | 质量分数/% |
---|---|
Fe | 44.57 |
Cu | 30.28 |
O | 14.28 |
Ni | 2.51 |
Sn | 2.35 |
S | 2.04 |
Si | 1.04 |
Ca | 0.96 |
其他 | 1.97 |
Table 1 Main elemental compositions of electroplating sludge
组成 | 质量分数/% |
---|---|
Fe | 44.57 |
Cu | 30.28 |
O | 14.28 |
Ni | 2.51 |
Sn | 2.35 |
S | 2.04 |
Si | 1.04 |
Ca | 0.96 |
其他 | 1.97 |
样品 | 比表面积/(m2/g) | 平均孔径/nm | 总孔容/(cm3/g) |
---|---|---|---|
CES-400 | 82.53 | 29.41 | 0.34 |
CES-550 | 48.13 | 30.20 | 0.21 |
CES-700 | 41.10 | 54.05 | 0.17 |
CES-850 | 10.14 | 3.41 | 0.02 |
CES-700R | 25.47 | 3.86 | 0.10 |
Table 2 Structural properties of as-prepared CES-T
样品 | 比表面积/(m2/g) | 平均孔径/nm | 总孔容/(cm3/g) |
---|---|---|---|
CES-400 | 82.53 | 29.41 | 0.34 |
CES-550 | 48.13 | 30.20 | 0.21 |
CES-700 | 41.10 | 54.05 | 0.17 |
CES-850 | 10.14 | 3.41 | 0.02 |
CES-700R | 25.47 | 3.86 | 0.10 |
样品 | 弱酸性/(μmol/g) | 中等酸性/(μmol/g) | 强酸性/(μmol/g) | 总酸量/(μmol/g) |
---|---|---|---|---|
CES-400 | 1.8 | 2.4 | 8.1 | 12.3 |
CES-550 | 1.3 | 2.2 | 6.8 | 10.3 |
CES-700 | — | — | 24.6 | 24.6 |
CES-850 | 1.9 | — | 18.5 | 20.4 |
Table 3 Acid site distribution of as-prepared CES-T
样品 | 弱酸性/(μmol/g) | 中等酸性/(μmol/g) | 强酸性/(μmol/g) | 总酸量/(μmol/g) |
---|---|---|---|---|
CES-400 | 1.8 | 2.4 | 8.1 | 12.3 |
CES-550 | 1.3 | 2.2 | 6.8 | 10.3 |
CES-700 | — | — | 24.6 | 24.6 |
CES-850 | 1.9 | — | 18.5 | 20.4 |
保留时间/min | 组分 | 含量/%(体积分数) |
---|---|---|
1.001 | H2 | 11.41 |
1.807 | CH4 | 0.20 |
2.092 | C2H6 | 0.0003 |
2.323 | C2H4 | 0.0005 |
2.469 | CO2 | 0.74 |
6.702 | CO | 2.57 |
Table 4 Gas phase product distribution from methanol reforming over CES-700
保留时间/min | 组分 | 含量/%(体积分数) |
---|---|---|
1.001 | H2 | 11.41 |
1.807 | CH4 | 0.20 |
2.092 | C2H6 | 0.0003 |
2.323 | C2H4 | 0.0005 |
2.469 | CO2 | 0.74 |
6.702 | CO | 2.57 |
样品 | FFR转化率/% | FA收率/% | MF收率/% |
---|---|---|---|
CES-400 | 58.4 | 3.7 | 0.8 |
CES-550 | 60.9 | 4.1 | 2.9 |
CES-700 | 96.8 | 40.4 | 5.9 |
CES-850 | 75.0 | 35.5 | 0.5 |
Table 5 Catalytic performance of CES-T on transfer hydrogenation of FFR
样品 | FFR转化率/% | FA收率/% | MF收率/% |
---|---|---|---|
CES-400 | 58.4 | 3.7 | 0.8 |
CES-550 | 60.9 | 4.1 | 2.9 |
CES-700 | 96.8 | 40.4 | 5.9 |
CES-850 | 75.0 | 35.5 | 0.5 |
1 | Fan L L, Ruan R, Li J, et al. Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite[J]. Applied Energy, 2020, 263: 114629. |
2 | 郭海军, 张海荣, 丁帅, 等. 木质纤维素多元醇液化及液化产物提质的研究进展[J]. 化工学报, 2021, 72(6): 3228-3238. |
Guo H J, Zhang H R, Ding S, et al. Research progress on lignocellulose liquefaction in polyhydric alcohol and upgrading of liquefaction product[J]. CIESC Journal, 2021, 72(6): 3228-3238. | |
3 | He Y F, Bie Y W, Lehtonen J, et al. Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: process optimization and reaction kinetics[J]. Fuel, 2019, 239: 1015-1027. |
4 | Yu Z Z, Wu H G, Li Y, et al. Advances in heterogeneously catalytic degradation of biomass saccharides with ordered-nanoporous materials[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 16970-16986. |
5 | Zhou K, Chen J X, Cheng Y J, et al. Enhanced catalytic transfer hydrogenation of biomass-based furfural into 2-methylfuran over multifunctional Cu-Re bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(44): 16624-16636. |
6 | Chen L F, Ye J Y, Yang Y S, et al. Catalytic conversion furfuryl alcohol to tetrahydrofurfuryl alcohol and 2-methylfuran at terrace, step, and corner sites on Ni[J]. ACS Catalysis, 2020, 10(13): 7240-7249. |
7 | Khemthong P, Yimsukanan C, Narkkun T, et al. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass[J]. Biomass and Bioenergy, 2021, 148: 106033. |
8 | Weerachawanasak P, Krawmanee P, Inkamhaeng W, et al. Development of bimetallic Ni-Cu/SiO2 catalysts for liquid phase selective hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2021, 149:106221. |
9 | Jiménez-Gómez C P, Cecilia J A, Moreno-Tost R, et al. Selective production of 2-methylfuran by gas-phase hydrogenation of furfural on copper incorporated by complexation in mesoporous silica catalysts[J]. ChemSusChem, 2017, 10(7): 1448-1459. |
10 | Durndell L J, Zou G C, Shangguan W F, et al. Structure-reactivity relations in ruthenium catalysed furfural hydrogenation[J]. ChemCatChem, 2019, 11(16): 3927-3932. |
11 | Pirmoradi M, Kastner J R. A kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst[J]. Chemical Engineering Journal, 2021, 414: 128693. |
12 | Tolek W, Khruechao K, Pongthawornsakun B, et al. Flame spray-synthesized Pt-Co/TiO2 catalysts for the selective hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications, 2021, 149: 106246. |
13 | Gao X, Tian S Y, Jin Y Y, et al. Bimetallic PtFe-catalyzed selective hydrogenation of furfural to furfuryl alcohol: solvent effect of isopropanol and hydrogen activation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12722-12730. |
14 | Zhang H G, Tong X L, Gao Y Q, et al. Highly efficient catalytic valorization of biomass-derived furfural in methanol and ethanol[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 152-159. |
15 | Wang T, Du J, Sun Y, et al. Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst[J]. Chinese Chemical Letters, 2021, 32(3): 1186-1190. |
16 | Wang Y T, Zhao D Y, Liang R, et al. Transfer hydrogenation of furfural to furfuryl alcohol over modified Zr-based catalysts using primary alcohols as H-donors[J]. Molecular Catalysis, 2021, 499: 111199. |
17 | Wang Y C, Hong Z Y, Mei D Q. A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6734-6744. |
18 | Zhang S Q, Yang X, Zheng K, et al. In-situ hydrogenation of furfural conversion to furfuryl alcohol via aqueous-phase reforming of methanol[J]. Applied Catalysis A: General, 2019, 581: 103-110. |
19 | Zhang J, Chen J Z. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5982-5993. |
20 | Shen S Y, Liu Y, Zhai D, et al. Electroplating sludge-derived spinel catalysts for NO removal via NH3 selective catalysis reduction[J]. Applied Surface Science, 2020, 528: 146969. |
21 | Bai H, Wang Z F, Zhang J, et al. Synthesis of a perovskite-type catalyst from Cr electroplating sludge for effective catalytic oxidization of VOC[J]. Journal of Environmental Management, 2021, 294: 113025. |
22 | Zhang C, Song J, Zhang J, et al. Understanding and application of an electroplating sludge-derived catalyst with an active texture for improved NO reduction[J]. Science of the Total Environment, 2018, 631/632: 308-316. |
23 | Chen D, Hou J, Yao L H, et al. Ferrite materials prepared from two industrial wastes: electroplating sludge and spent pickle liquor[J]. Separation and Purification Technology, 2010, 75(2): 210-217. |
24 | Li C Y, Zhang J, Gu J, et al. Insight into the role of varied acid-base sites on fast pyrolysis kinetics and mechanism of cellulose[J]. Waste Management, 2021, 135: 140-149. |
25 | Qi S C, Liu X Y, Zhu R R, et al. Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol[J]. Chemical Engineering Journal, 2022, 430: 132784. |
26 | Xia H H, Li J, Chen C Z, et al. Selective aqueous-phase hydrogenation of furfural to cyclopentanol over Ni-based catalysts prepared from Ni-MOF composite[J]. Inorganic Chemistry Communications, 2021, 133: 108894. |
27 | Singh G, Khan T S, Samanta C, et al. Single-step synthesis of 2-pentanone from furfural over Cu-Ni @SBA-15[J]. Biomass and Bioenergy, 2022, 156: 106321. |
28 | Chubar N, Gerda V, Szlachta M, et al. Effect of Fe oxidation state (+2 versus +3) in precursor on the structure of Fe oxides/carbonates-based composites examined by XPS, FTIR and EXAFS[J]. Solid State Sciences, 2021, 121: 106752. |
29 | Chen Y P, Ma L X, Zhang R G, et al. Carbon-supported Fe catalysts with well-defined active sites for highly selective alcohol production from Fischer-Tropsch synthesis[J]. Applied Catalysis B: Environmental, 2022, 312: 121393. |
30 | Winoto H P, Ahn B S, Jae J. Production of γ-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: optimizing the catalyst acid properties and process conditions[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 62-71. |
31 | Li F, Lu C S, Li X N. The effect of the amount of ammonia on the Cu0/Cu+ ratio of Cu/SiO2 catalyst for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chinese Chemical Letters, 2014, 25(11): 1461-1465. |
32 | Ma F, Li H L, Jiang J X. Furfural reduction via hydrogen transfer from supercritical methanol[J]. Chemical Research in Chinese Universities, 2019, 35(3): 498-503. |
33 | Pasini T, Lolli A, Albonetti S, et al. Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism[J]. Journal of Catalysis, 2014, 317: 206-219. |
34 | Gilkey M J, Panagiotopoulou P, Mironenko A V, et al. Mechanistic insights into metal lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran[J]. ACS Catalysis, 2015, 5(7): 3988-3994. |
35 | Chen H, Ruan H H, Lu X L, et al. Catalytic conversion of furfural to methyl levulinate in a single-step route over Zr/SBA-15 in near-critical methanol[J]. Chemical Engineering Journal, 2018, 333: 434-442. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[7] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[8] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[9] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[10] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[11] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[12] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[13] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[14] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
[15] | Mengxin LIANG, Yan GUO, Shidong WANG, Hongwei ZHANG, Pei YUAN, Xiaojun BAO. Study on preparation of Pd catalyst supported on carbon nitride for the selective hydrogenation of SBS [J]. CIESC Journal, 2023, 74(2): 766-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||