CIESC Journal ›› 2019, Vol. 70 ›› Issue (7): 2496-2502.DOI: 10.11949/j.issn.0438-1157.20181504
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Guowen XU(),Kun LI,Yifan JIANG,Mingjun HUANG,Dongxu FANG,Shanshan CAI(
)
Received:
2018-12-24
Revised:
2019-04-16
Online:
2019-07-05
Published:
2019-07-05
Contact:
Shanshan CAI
通讯作者:
蔡姗姗
作者简介:
徐国稳(1996—),男,硕士研究生,<email>xgw_smile@hust.edu.cn</email>
基金资助:
CLC Number:
Guowen XU, Kun LI, Yifan JIANG, Mingjun HUANG, Dongxu FANG, Shanshan CAI. Mesoscopic study on effective thermal conductivity of dry soil under three types of random fractal structures[J]. CIESC Journal, 2019, 70(7): 2496-2502.
徐国稳, 李坤, 蒋祎璠, 黄明骏, 房东旭, 蔡姗姗. 三类随机分形结构下干土壤有效热导率的介观研究[J]. 化工学报, 2019, 70(7): 2496-2502.
组别 | 粒径/mm | |||||||
---|---|---|---|---|---|---|---|---|
0.6~0.8 | 0.8~1.0 | 1.0~1.5 | 1.5~2.0 | 2.0~2.5 | 2.5~3.0 | 3.0~3.55 | 3.55~4 | |
1 | 218.5 | 48.6 | 117.6 | 113.7 | 110.8 | 108.6 | 117.4 | 94.7 |
2 | 415.9 | 49.1 | 104.5 | 88.1 | 77.6 | 70.1 | 70.7 | 53.9 |
3 | 573.8 | 39.7 | 79.4 | 62.5 | 52.3 | 45.4 | 44.2 | 32.7 |
Table 1 Particle size and mass distribution of samples/g
组别 | 粒径/mm | |||||||
---|---|---|---|---|---|---|---|---|
0.6~0.8 | 0.8~1.0 | 1.0~1.5 | 1.5~2.0 | 2.0~2.5 | 2.5~3.0 | 3.0~3.55 | 3.55~4 | |
1 | 218.5 | 48.6 | 117.6 | 113.7 | 110.8 | 108.6 | 117.4 | 94.7 |
2 | 415.9 | 49.1 | 104.5 | 88.1 | 77.6 | 70.1 | 70.7 | 53.9 |
3 | 573.8 | 39.7 | 79.4 | 62.5 | 52.3 | 45.4 | 44.2 | 32.7 |
组别 | 密度/(kg?m-3) | 孔隙率 | 分形维度数 | 粒径比 |
---|---|---|---|---|
1 | 1125 | 0.370,0.414,0.433 | 2.1 | 5 |
2 | 1125 | 0.370,0.414,0.433 | 2.5 | 5 |
3 | 1125 | 0.370,0.414,0.433 | 2.7 | 5 |
Table 2 The main parameters in test samples
组别 | 密度/(kg?m-3) | 孔隙率 | 分形维度数 | 粒径比 |
---|---|---|---|---|
1 | 1125 | 0.370,0.414,0.433 | 2.1 | 5 |
2 | 1125 | 0.370,0.414,0.433 | 2.5 | 5 |
3 | 1125 | 0.370,0.414,0.433 | 2.7 | 5 |
组别 | 孔隙率 | 实验结果/ (W?(m?K)-1) | 数值结果/(W?(m?K)-1) | 相对误差/% | ||||
---|---|---|---|---|---|---|---|---|
MCF多边形 | MCF圆形 | QSGS&MCF | MCF多边形 | MCF圆形 | QSGS&MCF | |||
1 | 0.370 | 0.1573 | 0.1466 | 0.1447 | 0.1754 | 6.80 | 8.03 | -11.51 |
0.414 | 0.1472 | 0.1238 | 0.1181 | 0.1440 | 15.87 | 19.79 | 2.17 | |
0.433 | 0.1480 | 0.1126 | 0.1115 | 0.1296 | 23.91 | 24.66 | 12.43 | |
2 | 0.370 | 0.1574 | 0.1489 | 0.1462 | 0.1794 | 5.38 | 7.11 | -13.98 |
0.414 | 0.1544 | 0.1232 | 0.1222 | 0.1514 | 20.18 | 20.86 | 1.94 | |
0.433 | 0.1521 | 0.1167 | 0.1164 | 0.1296 | 23.28 | 23.44 | 14.79 | |
3 | 0.370 | 0.1673 | 0.1444 | 0.1486 | 0.1825 | 13.68 | 11.17 | -9.09 |
0.414 | 0.1563 | 0.1236 | 0.1259 | 0.1468 | 20.93 | 19.42 | 6.08 | |
0.433 | 0.1558 | 0.1168 | 0.1122 | 0.1388 | 25.01 | 27.98 | 10.91 |
Table 3 Comparison between numerical and experimental results of dry sand samples
组别 | 孔隙率 | 实验结果/ (W?(m?K)-1) | 数值结果/(W?(m?K)-1) | 相对误差/% | ||||
---|---|---|---|---|---|---|---|---|
MCF多边形 | MCF圆形 | QSGS&MCF | MCF多边形 | MCF圆形 | QSGS&MCF | |||
1 | 0.370 | 0.1573 | 0.1466 | 0.1447 | 0.1754 | 6.80 | 8.03 | -11.51 |
0.414 | 0.1472 | 0.1238 | 0.1181 | 0.1440 | 15.87 | 19.79 | 2.17 | |
0.433 | 0.1480 | 0.1126 | 0.1115 | 0.1296 | 23.91 | 24.66 | 12.43 | |
2 | 0.370 | 0.1574 | 0.1489 | 0.1462 | 0.1794 | 5.38 | 7.11 | -13.98 |
0.414 | 0.1544 | 0.1232 | 0.1222 | 0.1514 | 20.18 | 20.86 | 1.94 | |
0.433 | 0.1521 | 0.1167 | 0.1164 | 0.1296 | 23.28 | 23.44 | 14.79 | |
3 | 0.370 | 0.1673 | 0.1444 | 0.1486 | 0.1825 | 13.68 | 11.17 | -9.09 |
0.414 | 0.1563 | 0.1236 | 0.1259 | 0.1468 | 20.93 | 19.42 | 6.08 | |
0.433 | 0.1558 | 0.1168 | 0.1122 | 0.1388 | 25.01 | 27.98 | 10.91 |
1 | DongY, MccartneyJ S, LuN. Critical review of thermal conductivity models for unsaturated soils[J]. Geotechnical and Geological Engineering, 2015, 33(2): 207-221. |
2 | AlrtimiA, RouainiaM, HaighS. Thermal conductivity of a sandy soil[J]. Applied Thermal Engineering, 2016, 106: 551-560. |
3 | ZhangN, WangZ Y. Review of soil thermal conductivity and predictive models[J]. International Journal of Thermal Sciences, 2017, 117: 172-183. |
4 | TurcotteD L. Fractals and fragmentation[J]. Journal of Geophysical Research, 1986, 91(B2): 1921-1926. |
5 | 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899. |
YangP L, LuoY P, ShiY C. Fractal characteristics of soil characterized by weight distribution of particle sizes[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899. | |
6 | KouJ L, WuF M, LuH J, et al. The effective thermal conductivity of porous media based on statistical self-similarity[J]. Physics Letters A, 2009, 374(1): 62-65. |
7 | CaiS S, CuiT F, ZhengB R, et al. A fractal approach to calculate the thermal conductivity of moist soil[C]// Proceedings of the IGSHPA Technical/Research Conference and Expo 2017. Denver: IGSHPA, 2017: 420-429. |
8 | LehmannP, StähliM, PapritzA, et al. A fractal approach to model soil structure and to calculate thermal conductivity of soils[J]. Transport in Porous Media, 2003, 52(3): 313-332. |
9 | ThompsonA H, KatzA J, KrohnC E. The microgeometry and transport properties of sedimentary rock[J]. Advances in Physics, 1987, 36(5): 625-694. |
10 | QinX, CaiJ C, XuP, et al. A fractal model of effective thermal conductivity for porous media with various liquid saturation[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1149-1156. |
11 | WangY Y, MaC, LiuY F, et al. A model for the effective thermal conductivity of moist porous building materials based on fractal theory[J]. International Journal of Heat and Mass Transfer, 2018, 125: 387-399. |
12 | 张东辉, 金峰, 施明恒, 等. 分形多孔介质中的热传导[J]. 应用科学学报, 2003, 21(3): 253-257. |
ZhangD H, JinF, ShiM H, et al. Heat conduction in fractal porous media [J]. Journal of Applied Sciences, 2003, 21(3): 253-257. | |
13 | JinH Q, YaoX L, FanL W, et al. Experimental determination and fractal modeling of the effective thermal conductivity of autoclaved aerated concrete: effects of moisture content[J]. International Journal of Heat and Mass Transfer, 2016, 92: 589-602. |
14 | JuY, ZhengJ T, EpsteinM, et al. 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 279: 212-226. |
15 | YuB M, ZouM Q, FengY J. Permeability of fractal porous media by Monte Carlo simulations[J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2787-2794. |
16 | MaierR S, BernardR S. Lattice-Boltzmann accuracy in pore-scale flow simulation[J]. Journal of Computational Physics, 2010, 229(2): 233-255. |
17 | ZhangX X, CrawfordJ W, YoungI M. A lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils[J]. Journal of Hydrology, 2016, 538: 152-160. |
18 | FanH, ZhengH. MRT-LBM-based numerical simulation of seepage flow through fractal fracture networks[J]. Science China Technological Sciences, 2013, 56(12): 3115-3122. |
19 | WangM R, WangJ K, PanN, et al. Three-dimensional effect on the effective thermal conductivity of porous media[J]. Journal of Physics D: Applied Physics, 2007, 40(1): 260-265. |
20 | WangM R, PanN. Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6): 1325-1331. |
21 | FangW Z, ChenL, GouJ J, et al. Predictions of effective thermal conductivities for three-dimensional four-directional braided composites using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2016, 92: 120-130. |
22 | CuiZ D, JiaY J. Analysis of electron microscope images of soil pore structure for the study of land subsidence in centrifuge model tests of high-rise building groups[J]. Engineering Geology, 2013, 164: 107-116. |
23 | CaiS S, ZhangB X, CuiT F, et al. Mesoscopic study of the effective thermal conductivity of dry and moist soil[J]. International Journal of Refrigeration, 2019, 98: 171-181. |
24 | YuB M. Fractal character for tortuous streamtubes in porous media[J]. Chinese Physics Letters, 2005, 22(1): 158-160. |
25 | ChenX, HanP. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. International Journal of Heat and Fluid Flow, 2000, 21(4): 463-467. |
26 | WangM R, WangJ K, PanN, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E, 2007, 75(3): 036702. |
27 | GinzburgI, VerhaegheF, D'HumièresD. Two-relaxation-time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions[J]. Communications in Computational Physics, 2008, 3(2): 427-478. |
28 | D'OrazioA, CorcioneM, CelataG P. Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition[J]. International Journal of Thermal Sciences, 2004, 43(6): 575-586. |
29 | ZouQ S, HeX Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591-1598. |
30 | 崔腾飞. 渗流影响下的地埋管换热器全尺度传热研究[D]. 武汉: 华中科技大学, 2018. |
CuiT F. Full-scale heat transfer analysis of ground heat exchangers with the effect of groundwater flow[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
31 | MandelbrotB B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman and Co., 1983. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[4] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[5] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[6] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[7] | Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981. |
[8] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[9] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[10] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[11] | Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293. |
[12] | Longfei JIA, Shaotong FU, Xing XIANG, Huahai ZHANG, Tao ZHANG, Limin WANG. Lattice Boltzmann simulations of the effect of particles movement on momentum transfer process [J]. CIESC Journal, 2023, 74(2): 735-747. |
[13] | Pei WANG, Rongkuo WEI. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide [J]. CIESC Journal, 2022, 73(7): 2885-2894. |
[14] | Pan HUANG, Cheng LIAN, Honglai LIU. Heat-mass transfer in real porous electrode based on simulated annealing algorithm [J]. CIESC Journal, 2022, 73(6): 2529-2542. |
[15] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 381
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||