CIESC Journal ›› 2013, Vol. 64 ›› Issue (1): 365-373.DOI: 10.3969/j.issn.0438-1157.2013.01.043
Previous Articles Next Articles
WEI Mingjie, LV Linghong, ZHU Yudan, GUO Xiaojing, LU Xiaohua
Received:
2012-04-09
Revised:
2012-06-08
Online:
2013-01-05
Published:
2013-01-05
Supported by:
supported by the Key Project of National Natural Science Foundation of China (21136004), the National Natural Science Foundation of China (21176113, 20876073, 21176112) and China Postdoctoral Science Foundation (20110491407).
魏明杰, 吕玲红, 朱育丹, 郭晓静, 陆小华
通讯作者:
陆小华
作者简介:
魏明杰(1983—),男,博士。
基金资助:
国家自然科学基金重点项目(21136004);国家自然科学基金项目(21176113, 20876073, 21176112);中国博士后科学基金项目(20110491407)。
CLC Number:
WEI Mingjie, LV Linghong, ZHU Yudan, GUO Xiaojing, LU Xiaohua. Improving diffusion of water molecules in slits of titanium dioxide: molecular dynamics simulation[J]. CIESC Journal, 2013, 64(1): 365-373.
魏明杰, 吕玲红, 朱育丹, 郭晓静, 陆小华. 提高二氧化钛孔道中水分子扩散性的分子模拟[J]. 化工学报, 2013, 64(1): 365-373.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2013.01.043
[1] | Diebold U.The surface science of titanium dioxide[J].Surface Science Reports, 2003,48(5-8):53-229 |
[2] | Chen X, Mao S S.Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J].Chemical Reviews, 2007,107(7):2891-2959 |
[3] | Fujishima A, Zhang X, Tryk D A.TiO2 photocatalysis and the related surface phenomena[J].Surface Science Reports, 2008,63:515-582 |
[4] | Selloni A, Vittadini A, Grtzel M.The adsorption of small molecules on the TiO2 anatase(101)surface by first-principles molecular dynamics[J].Surface Science, 1998,402-404:219-222 |
[5] | Michael A H.A surface science perspective on photocatalysis[J].Surface Science Reports, 2011,66(6/7):185-297 |
[6] | Gelb L D, Gubbins K E, Radhakrishnan R, Sliwinska-Bartkowiak M.Phase separation in confined systems[J].Reports on Progress in Physics, 1999,62(12):1573-1659 |
[7] | Bagchi B.Water dynamics in the hydration layer around proteins and micelles[J].Chemical Reviews, 2005,105(9):3197-3219 |
[8] | Cummings P T, Docherty H, Iacovella C R,Singh J K. Phase transitions in nanoconfined fluids:the evidence from simulation and theory[J].AIChE Journal, 2010,56(4):842-848 |
[9] | Wang J, Zhu Y, Zhou J, Lu X H.Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes[J].Physical Chemistry Chemical Physics, 2004,6(4):829-835 |
[10] | Huang L, Shao Q, Lu L, Lu X, Zhang L, Wang J, Jiang S. Helicity and temperature effects on static properties of water molecules confined in modified carbon nanotubes[J].Physical Chemistry Chemical Physics, 2006,8(33):3836-3844 |
[11] | Huang L, Zhang L, Shao Q, Wang J, Lu L, Lu X, Jiang S, Shen W.Molecular dynamics simulation study of the structural characteristics of water molecules confined in functionalized carbon nanotubes[J].The Journal of Physical Chemistry B, 2006,110(51):25761-25768 |
[12] | Shao Q, Huang L, Zhou J, Lu L, Zhang L, Lu X, Jiang S, Gubbins K E, Shen W.Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes[J].Physical Chemistry Chemical Physics, 2008,10(14):1896-1906 |
[13] | Shao Q, Zhou J, Lu L, Lu X, Zhu Y, Jiang S.Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes[J].Nano Letters, 2009,9(3):989-994 |
[14] | Zhu Y, Wei M, Shao Q, Lu L, Lu X, Shen W.Molecular dynamics study of pore inner wall modification effect in structure of water molecules confined in single-walled carbon nanotubes[J].The Journal of Physical Chemistry C, 2009,113(3):882-889 |
[15] | Guo X, Shao Q, Lu L, Zhu Y, Wei M, Lu X.Molecular dynamics simulation study of ionic hydration in negatively charged single-walled carbon nanotubes[J].Journal of Nanoscience and Nanotechnology, 2010,10(11):7620-7624 |
[16] | Zhu Y, Guo X, Shao Q, Wei M, et al.Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube[J].Fluid Phase Equilibria, 2010,297(2):215-220 |
[17] | Giovambattista N, Debenedetti P G, Rossky P J.Effect of surface polarity on water contact angle and interfacial hydration structure[J].The Journal of Physical Chemistry B, 2007,111(32):9581-9587 |
[18] | Giovambattista N, Debenedetti P G, Rossky P J.Hydration behavior under confinement by nanoscale surfaces with patterned hydrophobicity and hydrophilicity[J].The Journal of Physical Chemistry C, 2007,111(3):1323-1332 |
[19] | Giovambattista N, Debenedetti P G, Rossky P J.Enhanced surface hydrophobicity by coupling of surface polarity and topography[J].Proceedings of the National Academy of Sciences, 2009,106(36):15181-15185 |
[20] | Giovambattista N, Rossky P J, Debenedetti P G.Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces[J].The Journal of Physical Chemistry B, 2009,113(42):13723-13734 |
[21] | Romero-Vargas Castrilloón S, Giovambattista N S, Aksay I A,Debenedetti P G.Effect of surface polarity on the structure and dynamics of water in nanoscale confinement[J].The Journal of Physical Chemistry B, 2009,113(5):1438-1446 |
[22] | Garde S, Patel A J.Unraveling the hydrophobic effect, one molecule at a time[J].Proceedings of the National Academy of Sciences, 2011,108(40):16491-16492 |
[23] | Patel A J, Varilly P, Jamadagni S N, Acharya H, Garde S, Chandler D.Extended surfaces modulate hydrophobic interactions of neighboring solutes[J].Proceedings of the National Academy of Sciences, 2011,108(43):17678-17683 |
[24] | Wei M J, Zhou J, Lu X, Zhu Y, Liu W, Lu L, Zhang L. Diffusion of water molecules confined in slits of rutile TiO2(110)and graphite(0001)[J].Fluid Phase Equilibria, 2011,302(1/2):316-320 |
[25] | Striolo A.From interfacial water to macroscopic observables:a review[J].Adsorption Science & Technology, 2011,29(3):211-258 |
[26] | Ho T A, Papavassiliou D V, Lee L L, Striolo A.Liquid water can slip on a hydrophilic surface[J].Proceedings of the National Academy of Sciences, 2011,108(39):16170-16175 |
[27] | Akhavan O, Ghaderi E.Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation[J].The Journal of Physical Chemistry C, 2009,113(47):20214-20220 |
[28] | Ng Y H, Lightcap I V, Goodwin K, Matsumura M, Kamat P V.To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films?[J].The Journal of Physical Chemistry Letters, 2010,1(15):2222-2227 |
[29] | Xu Y J, Zhuang Y, Fu X.New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes:a case study on degradation of benzene and methyl orange[J].The Journal of Physical Chemistry C, 2010,114(6):2669-2676 |
[30] | Zhang Y, Tang Z R, Fu X, Xu Y J.TiO2—graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant:is TiO2—graphene truly Different from other TiO2—carbon composite materials?[J].ACS Nano, 2010,4(12):7303-7314 |
[31] | Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf L V, Zhang J, Aksay I A, Liu J.Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion[J].ACS Nano, 2009,3(4):907-914 |
[32] | Williams G, Seger B, Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide[J].ACS Nano, 2008,2(7):1487-1491 |
[33] | Li Q, Yang H, Qiu F, Zhang X.Promotional effects of carbon nanotubes on V2O5/TiO2 for NOx removal[J].Journal of Hazardous Materials, 2011,192(2):915-921 |
[34] | Berendsen H J C, Grigera J R, Straatsma T P.The missing term in effective pair potentials[J].The Journal of Physical Chemistry, 1987,91(24):6269-6271 |
[35] | Matsui M, Akaogi M.Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2[J].Molecular Simulation, 1991,6:239-244 |
[36] | Naicker P K, Cummings P T, Zhang H Z, Banfield J F. Characterization of titanium dioxide nanoparticles using molecular dynamics simulations[J].The Journal of Physical Chemistry B, 2005,109:15243-15249 |
[37] | Bandura A V, Kubicki J D.Derivation of force field parameters for TiO2-H2O systems from ab initio calculations[J].The Journal of Physical Chemistry B, 2003,107:11072-11081 |
[38] | Predota M, Bandura A V, Cummings P T, Kubicki J D, Wesolowski D J, Chialvo A A, Machesky M L.Electric double layer at the rutile(110)surface(Ⅰ):Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials[J].The Journal of Physical Chemistry B, 2004,108(32):12049-12060 |
[39] | Jorgensen W L, Maxwell D S, Tirado-Rives J.Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J].Journal of the American Chemical Society, 1996,118(45):11225-11236 |
[40] | Skelton A A, Walsh T R.Interaction of liquid water with the rutile TiO2(110)surface[J].Molecular Simulation, 2007,33(4/5):379-389 |
[41] | Smith W, Forester D R.CCP5 - a collaborative computational project for the computer-simulation of condensed phases[J].Journal of Molecular Graphics, 1987,5:71-74 |
[42] | Smith W, Forester T R.DL_POLY_2.0:a general-purpose parallel molecular dynamics simulation package[J].Journal of Molecular Graphics, 1996,14(3):136-141 |
[43] | Berendsen H J C, Postma J P M, Gunsteren W F, Dinola A,Haak J R.Molecular dynamics with coupling to an external bath[J].The Journal of Chemical Physics, 1984,81(8):3684-3690 |
[44] | Darden T, York D,Pedersen L.Particle mesh Ewald:an N·log(N)method for Ewald sums in large systems[J].The Journal of Chemical Physics, 1993,98(12):10089-10092 |
[45] | Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A,Fujiyoshi Y.Structural determinants of water permeation through aquaporin-1[J].Nature, 2000,407(6804):599-605 |
[46] | Hummer G, Rasaiah J C,Noworyta J P.Water conduction through the hydrophobic channel of a carbon nanotube[J].Nature, 2001,414(6860):188-190 |
[47] | Agre P.Aquaporin water channels[J].Bioscience Reports, 2004,24(3):127-163 |
[48] | Joseph S,Aluru N R.Why are carbon nanotubes fast transporters of water?[J].Nano Letters, 2008,8(2):452-458 |
[1] | Xiaoqing ZHOU, Chunyu LI, Guang YANG, Aifeng CAI, Jingyi WU. Icing kinetics and mechanism of droplet impinging on supercooled corrugated plates with different curvature [J]. CIESC Journal, 2023, 74(S1): 141-153. |
[2] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[3] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[6] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[7] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Di WU, Bin HU, Ruzhu WANG, Junyu LIANG. Performance analysis of water vapor quasi-saturated compression high temperature heat pump system [J]. CIESC Journal, 2023, 74(S1): 45-52. |
[10] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[11] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[12] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[13] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[14] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[15] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||