CIESC Journal ›› 2013, Vol. 64 ›› Issue (3): 779-787.DOI: 10.3969/j.issn.0438-1157.2013.03.002
Previous Articles Next Articles
HE Jinbo, FANG Jianwei, WEN Guangdong, MA Jie, SU Baogen, XING Huabin, REN Qilong
Received:
2012-08-28
Revised:
2012-10-23
Online:
2013-03-05
Published:
2013-03-05
何金波, 房建威, 闻光东, 马杰, 苏宝根, 邢华斌, 任其龙
通讯作者:
苏宝根
作者简介:
何金波(1990—),男,硕士研究生。
基金资助:
中央高校基本科研业务费专项资金项目(2012FZA4023)。
CLC Number:
HE Jinbo, FANG Jianwei, WEN Guangdong, MA Jie, SU Baogen, XING Huabin, REN Qilong. Progress on reforming of carbon dioxide and methane to synthesis gas by thermal plasma[J]. CIESC Journal, 2013, 64(3): 779-787.
何金波, 房建威, 闻光东, 马杰, 苏宝根, 邢华斌, 任其龙. 热等离子体重整二氧化碳和甲烷制合成气的研究进展[J]. 化工学报, 2013, 64(3): 779-787.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2013.03.002
[1] | Li X,Liao X,Ren X Z,Bai M G,Dai X Y,Yin Y X.Carbon dioxide reforming of methane to syngas by warm plasma:low energy consumption//Power and Energy Engineering Conference(APPEEC).IEEE,2010:1-5 |
[2] | Istadi I,Amin N A S.Co-generation of synthesis gas and C2+ hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor:a review[J].Fuel,2006,85:577-592 |
[3] | Cheng D G,Zhu X L,Ben Y H,He F.Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma[J].Catalysis Today,2006,115:205-210 |
[4] | Hwang N,Song Y H,Cha M S.Efficient use of CO2 reforming of methane with an arc-jet plasma[J].IEEE Transactions on Plasma Science,2010,38(12):3291-3299 |
[5] | Nikoo M K,Amin N A S.Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation[J].Fuel Processing Technology,2011,92:678-691 |
[6] | Liu C J,Xu G H,Wang T M.Non-thermal plasma approaches in CO2 utilization[J].Fuel Processing Technology,1999,58:119-134 |
[7] | Zhou L M,Xue B,Kogelschatz U,Eliasson B. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas[J].Energy & Fuels,1998,12:1191-1199 |
[8] | Song H K,Lee H,Choi J W,Na B.Effect of electrical pulse forms on the CO2 reforming of methane using atmospheric dielectric barrier discharge[J].Plasma Chemistry and Plasma Processing,2004,24(1):57-72 |
[9] | Rostrup-Nielsen J R.New aspects of syngas production and use[J].Catalysis Today,2000,63:159-164 |
[10] | Supat K,Chavadej S,Lobban L L,Mallinson R G. Carbon dioxide reforming with methane in low temperature plasmas[J].Fuel Chemistry Division Preprints,2002,47(1):269-272 |
[11] | Tao X M,Qi F W,Yin Y X,Dai X Y.CO2 reforming of CH4 by combination of thermal plasma and catalyst[J].International Journal of Hydrogen Energy,2008,33:1262- 1265 |
[12] | Chen Q,Dai W,Tao X M,Yu H,Dai X Y,Yin Y X. CO2 reforming of CH4 by atmospheric pressure abnormal glow plasma[J].Plasma Science & Technology,2006,8(2):181-184 |
[13] | Li D H,Li X,Bai M G,Tao X M,Shang S Y,Dai X Y,Yin Y X.CO2 reforming of CH4 by atmospheric pressure glow discharge plasma:a high conversion ability[J].International Journal of Hydrogen Energy,2009,34:308-313 |
[14] | Li M W,Tian Y L,Xu G H.Characteristics of carbon dioxide reforming of methane via alternating current(AC)corona plasma reactions[J].Energy & Fuels,2007,21:2335-2339 |
[15] | Liu C J,Marafee A,Hill B,Xu G H,Mallinson R,Lobban L.Oxidative coupling of methane with AC and DC corona discharges[J].Ind.Eng.Chem.Res.,1996,35:3295-3301 |
[16] | Goujard V,Tatibouet J M,Batiot-Dupeyrat C.Carbon dioxide reforming of methane using a dielectric barrier discharge reactor:effect of helium dilution and kinetic model[J].Plasma Chemistry and Plasma Processing,2011,31:315-325 |
[17] | Sentek J,Krawczyk K,Kroker T,Torsten K.Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges[J].Applied Catalysis B:Environmental,2010,94:19-26 |
[18] | Jiang T,Li Y,Liu C J,Xu G H,Eliasson Baldur,Xue B Z.Plasma methane conversion using dielectric-barrier discharges with zeolite A[J].Catalysis Today,2002,72:229-235 |
[19] | Bo Z,Yan J H,Li X D,Chi Y,Cen K F.Plasma assisted dry methane reforming using gliding arc gas discharge:effect of feed gases proportion[J].International Journal of Hydrogen Energy,2008,33:5545-5553 |
[20] | Indarto A,Choi J W,Lee H,Song H K.Effect of additive gases on methane conversion using gliding arc discharge[J].Energy,2006,31:2986-2995 |
[21] | Fidalgo B,Dominguez A,Pis J J,Mendez J A.Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J].International Journal of Hydrogen Energy,2008,33:4337-4344 |
[22] | Tao X M,Bai M G,Li X,Long H L,Shang S Y,Yin Y X,Dai X Y.CH4-CO2 reforming by plasma-challenges and opportunities[J].Progress in Energy and Combustion Science,2011,37:113-124 |
[23] | Baulch D L,Cobos C J,Cox R A,Frank P,Hayman G,Just Th,Kerr J A,Murrells T,Pilling M J,Troe J,Walker R W,Warnatz J.Evaluated kinetic data for combustion modelling[J].J. Phys. Chem. Ref.Data,1994,23(Supplement I):847-1033 |
[24] | Glassman I.Combustion[M].3rd ed.San Diego:Academic Press,1996 |
[25] | Tsang W,Hampson R F.Chemical kinetic data base for combustion chemistry(Ⅰ):Methane and related compounds[J].J.Phys.Chem.Ref.Data,1986,15(3):1087 |
[26] | Naser S,Amir H,Masih H,Seyed M,Ali A,Chapar R,Akbar Z.DC-pulsed plasma for dry reforming of methane to synthesis gas[J].Plasma Chemistry and Plasma Processing,2010,30:333-347 |
[27] | Yamamoto A,Mori S,Suzuki M.Scale-up or numbering-up of a micro plasma reactor for the carbon dioxide decomposition[J].Thin Solid Films,2007,515:4296-4300 |
[28] | Hayashi N,Yamakawa T,Baba S.Effect of additive gases on synthesis of organic compounds from carbon dioxide using non-thermal plasma produced by atmospheric surface discharges[J].Vacuum,2006,80:1299-1304 |
[29] | Oumghar A,Legrand J C,Diamy A M,Turillon N. Methane conversion by an air microwave plasma[J].Plasma Chemistry and Plasma Processing,1995,15(1):87-107 |
[30] | Warnatz J.Rate Coefficients in the C/H/O System. Combustion Chemistry[M].New York:Springer Verlag,1984 |
[31] | Long H L,Shang S Y,Tao X M,Yin Y X,Dai X Y.CO2 reforming of CH4 by combination of cold plasma jet and Ni/γ-Al2O3 catalyst[J].International Journal of Hydrogen Energy,2008,33:5510-5515 |
[32] | Miller J A,Bowman C T.Mechanism and modeling of nitrogen chemistry in combustion[J].Prog.Energy Combust.Sci.,1989,15:287-338 |
[33] | Zhou L M,Xue B,Kogelschatz U,Eliasson B. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas[J].Energy & Fuels,1998,12:1191-1199 |
[34] | James R F,Raymond P A,Timothy A H,Brent A D. Plasma pyrolysis of methane to hydrogen and carbon black[J].Ind.Eng.Chem.Res.,2002,41:1425-1435 |
[35] | Tao X M,Bai M G,Wu Q Y,Huang Z J,Yin Y X,Dai X Y.CO2 reforming of CH4 by binode thermal plasma[J].International Journal of Hydrogen Energy,2009,34:9373-9378 |
[36] | Fauchais P,Vardelle A.Thermal plasmas[J].IEEE Transactions on Plasma Science,1997,25(6):1258-1280 |
[37] | Lan Tianshi(兰天石),Ran Wei(冉伟),Long Huali(龙华丽),Wang Yu(王彧),Yin Yongxiang(印永祥).Experimental study on syngas production by carbon dioxide(CO2)reforming of methane(CH4)by plasma jet[J].Natural Gas Industry(天然气工业),2007,27(5):129-132 |
[38] | Sun Yanpeng(孙艳朋),Nie Yong(聂勇),Wu Angshan(吴昂山),Yuan Ji(袁计),Song Yifan(宋一凡),Ji Jianbing(计建柄).Thermodynamic study on carbon dioxide reforming of methane to syngas by thermal plasma[J].Natural Gas Industry(天然气工业),2010,35:22-26 |
[39] | Chun Y N,Song H W,Kim S C,Lim M S.Hydrogen-rich gas production from biogas reforming using plasmatron[J].Energy & Fuels,2008,22:123-127 |
[40] | Yun S H,Kim G J,Park D W.Decomposition and conversion of carbon dioxide into synthesis gas using thermal plasma[J].Journal of Ind.&Eng.Chemistry,1997,3(4):293-297 |
[41] | Ni G H,Lan Y,Cheng C,Meng Y D,Wang X K. Reforming of methane and carbon dioxide by DC water plasma at atmospheric pressure[J].International Journal of Hydrogen Energy,2011,36:I2869-I2876 |
[42] | Ni G H,Meng Y D,Cheng C,Lan Y.Characteristics of a novel water plasma torch[J].Chin.Phys.Lett.,2010,27(5):055203:1-3 |
[43] | Blutke A S,Bohn E M,Ottiger R S,Tuszewski M G,Vavruska J S.Use of a chemically reactive plasma for thermal-chemical processes:US,6153852.2000 |
[44] | Detering B A,Kong P C.Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases:PCT Int. Appl. WO,0073247(A1).2000 |
[45] | Khalaf P I,Souza I G,Carasek E.Production of synthesis gas by thermal plasma via pyrolysis of methane and carbon dioxide[J].Quim.Nova,2011,34(9):1491-1495 |
[46] | Meguernes K,Chaplle J,Czernichowski A.Oxidization of CH4 by CO2 in an electric arc and in a cold discharge// 11th Int.Symp.on Plasma Chem..1993:710-715 |
[47] | Nassar H,Meguernes K,Czernichowski A,Chapelle J.Temperature measurement based on C2 swan spectrum in a transferred arc in CH4+CO2 mixture//11th Int.Symp.on Plasma Chem..1993:651-656 |
[48] | Pershin L,Mostaghimi J,Grisha N.Carbonaceous Gases for DC Plasma Generation.Centre for Advanced Coating Technologies,University of Toronto |
[49] | Yuan Lijun(原丽君).Study on CH4-CO2 reforming to syngas by plasma.Taiyuan:Taiyuan University of Technology,2007 |
[50] | Bai Meigui,Tao Xumei,Wu Qingyou,Huang Zhijun,Li Yuliang,Yin Yongxiang,Dai Xiaoyan.Effect of different feeding modes on CO2 reforming of CH4 by thermal plasma[J].Chinese Journal of Chemical Physics,2009,25(12):2455-2460 |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[5] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[6] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[7] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[8] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[11] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[12] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[13] | Han HU, Liang YANG, Chunxiao LI, Daoping LIU. Kinetics of methane storage in the natural tobacco leaching filtrate in the hydrate form [J]. CIESC Journal, 2023, 74(3): 1313-1321. |
[14] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[15] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||