[1] |
Kashid M N, Kiwi-Minsker L. Microstructured reactors for multiphase reactions: state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(14): 6465-6485
|
[2] |
Chen Guangwen (陈光文), Zhao Yuchao (赵玉潮), Yue Jun (乐军), Dong Zhengya (董正亚), Cao Haishan (曹海山), Yuan Quan (袁权). Transport phenomena in micro-chemical engineering[J]. CIESC Journal(化工学报), 2013, 64(1): 63-75
|
[3] |
Luo Guangsheng (骆广生), Wang Kai (王凯), Lü Yangcheng (吕阳成), Wang Yujun (王玉军), Xu Jianhong (徐建鸿). Research and development of micro-scale multiphase reaction processes[J]. CIESC Journal(化工学报), 2013, 64(1): 165-172
|
[4] |
Chen G W, Yue J, Yuan Q. Gas-liquid microreaction technology: recent developments and future challenges[J]. Chinese Journal of Chemical Engineering, 2008, 16(5): 663-669
|
[5] |
Cabeza V S, Kuhn S, Kulkarni A A, Jensen K F. Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform[J]. Langmuir, 2012, 28(17): 7007-7013
|
[6] |
Yen Brian K H, Günther A, Schmidt M A, Jensen K F, Bawendi M G. A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of cdse quantum dots[J]. Angewandte Chemie International Edition, 2005, 44(34): 5447-5451
|
[7] |
Yasukawa T, Ninomiya W, Ooyachi K, Aoki N, Mae K. Enhanced production of ethyl pyruvate using gas-liquid slug flow in microchannel[J]. Chemical Engineering Journal, 2011, 167(2/3): 527-530
|
[8] |
Bakker J J W, Zieverink M M P, Reintjens R, Kapteijn F, Moulijn J A, Kreutzer M T. Heterogeneously catalyzed continuous-flow hydrogenation using segmented flow in capillary columns[J]. Chemcatchem, 2011, 3(7): 1155-1157
|
[9] |
Ye C B, Chen G W, Yuan Q. Process characteristics of CO2 absorption by aqueous monoethanola mine in a microchannel reactor[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 111-119
|
[10] |
Ye C B, Dang M H, Yao C Q, Chen G W, Yuan Q. Process analysis on CO2 absorption by monoethanolamine solutions in microchannel reactors[J]. Chemical Engineering Journal, 2013, 225: 120-127
|
[11] |
Thulasidas T C, Abraham M A, Cerro R L. Dispersion during bubble-train flow in capillaries[J]. Chemical Engineering Science, 1999, 54(1): 61-76
|
[12] |
Van Baten J M, Krishna R. CFD simulations of wall mass transfer for Taylor flow in circular capillaries[J]. Chemical Engineering Science, 2005, 60(4): 1117-1126
|
[13] |
Shao N, Salman W, Gavriilidis A, Angeli P. CFD simulations of the effect of inlet conditions on Taylor flow formation[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1603-1611
|
[14] |
Yuan Xigang (袁希钢), Song Wenqi (宋文琦). Numerical simulation of gas-liquid two-phase flow pattern in T-junction microchannel[J]. Journal of Tianjin University (天津大学学报), 2012, 45(9): 763-769
|
[15] |
Fu T T, Ma Y G, Funfschilling D, Li H Z. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10): 2392-2400
|
[16] |
Yue J, Luo L A, Gonthier Y, Chen G W, Yuan Q. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708
|
[17] |
Dang Minhui, Yue Jun, Chen Guangwen, Yuan Quan. Formation characteristics of Taylor bubbles in a microchannel with a converging shape mixing junction[J]. Chemical Engineering Journal, 2013, 223(0): 99-109
|
[18] |
Qian D Y, Lawal A. Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel[J]. Chemical Engineering Science, 2006, 61(23): 7609-7625
|
[19] |
Kumar V, Vashisth S, Hoarau Y, Nigam K D P. Slug flow in curved microreactors: hydrodynamic study[J]. Chemical Engineering Science, 2007, 62(24): 7494-7504
|
[20] |
Zhao Y, Hemminger O, Fan L S. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels[J]. Chemical Engineering Science, 2007, 62(24): 7172-7183
|
[21] |
Tan J, Li S W, Wang K, Luo G S. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal, 2009, 146(3): 428-433
|
[22] |
Hou Jingxin (侯璟鑫), Qian Gang (钱刚), Zhou Xinggui (周兴贵). Effects of gas inlet angle and cross-section aspect ratio on Taylor bubble behavior in microchannels[J]. CIESC Journal (化工学报), 2013, 64(6): 1976-1982
|
[23] |
Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354
|
[24] |
Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886
|
[25] |
Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows[J]. Journal of Computational Physics, 2000, 162(2): 301-337
|
[26] |
Chakraborty I, Biswas G, Ghoshdastidar P S. A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 240-259
|
[27] |
Albadawi A, Donoghue D B, Robinson A J, Murray D B, Delauré Y M C. On the analysis of bubble growth and detachment at low capillary and bond numbers using volume of fluid and level set methods[J]. Chemical Engineering Science, 2013, 90: 77-91
|
[28] |
Garstecki P, Fuerstman M J, Stone H A, Whitesides G M. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446
|