[1] |
Yang Wei(杨威), Tian Jiayu(田家宇), Li Guibai(李圭白). Factors influencing ammonia removal of biological activated filter in drinking water treatment[J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2008, 59(9): 2316-2321
|
[2] |
Huang L, Li L, Dong W. Removal of ammonia by OH radical in aqueous phase[J]. Environmental Science & Technology, 2008, 42(21): 8070-8075
|
[3] |
Jin J, El-Din M G, Bolton J R. Assessment of the UV/chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4): 1890-1896
|
[4] |
Chan P Y, El-Din M G, Bolton J R. A solar-driven UV/chlorine advanced oxidation process[J]. Water Research, 2012, 46: 5672-5682
|
[5] |
Watts M J, Linden K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water[J]. Water Research, 2007, 41(13): 2871-2878
|
[6] |
Feng Y, Smith D W, Bolton J R. Photolysis of aqueous free chlorine species (HOCl and OCl-) with 254 nm ultraviolet light[J]. Journal of Environmental Engineering and Science, 2007, 6(3): 277-284
|
[7] |
Wang D, Bolton J R, Hofmann R. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012: 46: 4677-4686
|
[8] |
Sichel C, Garcia C, Andre K. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants[J]. Water Research, 2011, 45(19): 6371-6380
|
[9] |
Zhu Junren(朱俊任), Zheng Huaili(郑怀礼), Zhang Zhi(张智). Synthesis and characterization of composite flocculant PAFS-CPAM by response surface methodology[J]. CIESC Journal (化工学报), 2012, 63(12): 4019-4027
|
[10] |
Chen Bo(陈博), Liao Zuwei(廖祖维), Wang Jingdai(王靖岱). Multi-objective optimization of aromatic extraction process[J]. CIESC Journal (化工学报), 2012, 63(3): 851-859
|
[11] |
Kasiri M, Khataee A. Removal of organic dyes by UV/H2O2 process: modelling and optimization[J]. Environmental Technology, 2012, 33(12): 1417-1425
|
[12] |
Pressley T A, Bishop D F, Roan S G. Ammonia-nitrogen removal by breakpoint chlorination[J]. Environmental Science & Technology, 1972, 6(7): 622-628
|
[13] |
Im J K, Cho I H, Kim S K. Optimization of carbamazepine removal in O3/UV/H2O2 system using a response surface methodology with central composite design[J]. Desalination, 2012, 285: 306-314
|
[14] |
Luo Guangying(罗广英). Break point chlorination remove ammonia in the water[J]. Guangzhou Chemical Industry (广州化工), 2009, 37(5): 172-173
|
[15] |
De Brito, Paterniani J, Brota G. Ammonia removal from leachate by photochemical process using H2O2[J]. Ambiente & água-An Interdisciplinary Journal of Applied Science, 2010, 5(2): 51-60
|
[16] |
Mikami I, Aoki S, Miura Y. Photocatalytic oxidation of aqueous ammonia in the presence of oxygen over platinum-loaded TiO2[J]. Chemistry Letters, 2010, 39(7): 704-705
|
[17] |
Zhu X, Nanny M A, Butler E C. Photocatalytic oxidation of aqueous ammonia in model gray waters[J]. Water Research, 2008, 42(10): 2736-2744
|
[18] |
Suty H, De Traversay C, Cost M. Applications of advanced oxidation processes: present and future[J]. Water Science and Technology, 2004, 49(4): 227-233
|
[19] |
Pretzer L A, Carlson P J, Boyd J E. The effect of Pt oxidation state and concentration on the photocatalytic removal of aqueous ammonia with Pt-modified titania[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200(2/3): 246-253
|
[20] |
Vohra M, Selimuzzaman S, Al-Suwaiyan M. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH[J]. Environmental Technology, 2010, 31(6): 641-654
|
[21] |
Zhu X, Castleberry S R, Nanny M A. Effects of pH and catalyst concentration on photocatalytic oxidation of aqueous ammonia and nitrite in titanium dioxide suspensions[J]. Environmental Science & Technology, 2005, 39(10): 3784-3791
|