CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2520-2534.DOI: 10.3969/j.issn.0438-1157.2014.07.014
Previous Articles Next Articles
ZHOU Chilou, ZHAO Yongzhi
Received:
2014-03-28
Revised:
2014-04-14
Online:
2014-07-05
Published:
2014-07-05
周池楼, 赵永志
通讯作者:
赵永志
CLC Number:
ZHOU Chilou, ZHAO Yongzhi. Discrete element method and its applications in fluidization[J]. CIESC Journal, 2014, 65(7): 2520-2534.
周池楼, 赵永志. 离散单元法及其在流态化领域的应用[J]. 化工学报, 2014, 65(7): 2520-2534.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.014
[1] | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47-65 |
[2] | Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two dimensional fluidized bed [J]. Powder Technology, 1993, 77: 79-87 |
[3] | Gidaspow D. Multiphase Flow and Fluidization[M]. San Diego: Academic Press, 1994 |
[4] | Williams J R, Pentl A P. Superquadrics and model dynamics for discrete elements in interactive design [J]. Engineering Computations, 1992, 9: 115-127 |
[5] | Cleary P W. Industrial particle flow modeling using discrete element method [J]. Engineering Computations: International Journal for Computer-Aided Engineering and Software, 2009, 26: 698-743 |
[6] | Cleary P W, Morrison R D. Particle methods for modelling in mineral processing [J]. International Journal of Computational Fluid Dynamics, 2009, 23: 137-146 |
[7] | Djordjevic N, Morrison R, Loveday B, Cleary P. Modelling comminution patterns within a pilot scale AG/SAG mill [J]. Minerals Engineering, 2006, 19: 1505-1516 |
[8] | Delaney G W, Cleary P W, Sinnott M D, Morrison R D. Novel application of DEM to modeling comminution processes//9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics[C].2010: 12099 |
[9] | Hilton J E, Mason L R, Cleary P W. Dynamics of gas-solid fluidised beds with non-spherical particle geometry [J]. Chemical Engineering Science, 2010, 65: 1584-1596 |
[10] | Cleary P W. Large scale industrial DEM modeling [J]. Engineering Computations, 2004, 21: 169-204 |
[11] | Chen Youchuan (陈友川). Study of contacting discrete element model based on superquadrics [D]. Hangzhou: Zhejiang University, 2012 |
[12] | Favier J F, Abbaspour-Fard M H, Kremmer M, Raji A O. Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multi-element model particles [J]. Engineering Computations, 1999, 16:467-480 |
[13] | Song Y, Turton R, Kayihan F. Contact detection algorithms for DEM simulations of tablet-shaped particles [J]. Powder Technology, 2006, 161: 32-40 |
[14] | Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V. A study on the validity of the multi-sphere discrete element method [J]. Powder Technology, 2008, 188: 153-165 |
[15] | Abbaspour-Fard M H. Theoretical validation of a multi-sphere, discrete element model suitable for biomaterials handling simulation [J]. Biosystems Engineering, 2004, 88: 153-161 |
[16] | Favier J F, Abbaspour-Fard M H, Kremmer M. Modeling nonsperical particles using multisphere discrete elements [J]. Journal of Engineering Mechanics, 2001, 127: 971-977 |
[17] | Lee H, Kwon J H, Kim K H, Cho H C. Application of DEM model to breakage and liberation behaviour of recycled aggregates from impact-breakage of concrete waste [J]. Minerals Engineering, 2008, 21: 761-765 |
[18] | Wang L, Park J Y, Fu Y. Representation of real particles for DEM simulation using X-ray tomography [J]. Construction and Building Materials, 2007, 21: 338-346 |
[19] | Schubert W, Khanal M, Tomas J. Impact crushing of particle- particle compounds—experiment and simulation [J]. International Journal of Mineral Processing, 2005, 75: 41-52 |
[20] | Jensen R P, Bosscher P J, Plesha M E, Edil T B. DEM simulation of granular media-structure interface: effects of surface roughness and particle shape [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23: 531-547 |
[21] | Abou-Chakra H, Baxter J, Tüzün U. Three-dimensional particle shape descriptors for computer simulation of non-spherical particulate assemblies [J]. Advanced Powder Technology, 2004, 15: 63-77 |
[22] | Markauskas D, Ka?ianauskas R, D?iugys A, Navakas R. Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations [J]. Granular Matter, 2010, 12: 107-123 |
[23] | Nezami E G, Hashash Y M A, Zhao D, Ghaboussi J. A fast contact detection algorithm for 3-D discrete element method [J]. Computers and Geotechnics, 2004, 31: 575-587 |
[24] | Zhu Tao (祝涛). Study of contact algorithm for 3-D discrete element method [D]. Wuhan: Huazhong University of Science & Technology, 2009 |
[25] | Zhao Yongzhi (赵永志), Cheng Yi (程易), Zheng Jinyang (郑津洋). Three-equation linear spring-dashpot DEM model and the determination of contact parameters [J]. Chinese Journal of Computational Mechanics (计算力学学报), 2009, 26 (2): 239-244 |
[26] | Langston P A, Tuzun U, Heyes D M. Continuous potential discrete particle simulations of stress and velocity-fields in hoppers-transition from fluid to granular flow [J]. Chemical Engineering Science, 1994, 49: 1259-1275 |
[27] | Hertz H. Über die Berührung fester elastischer Körper [J]. Journal fur die reine und angewandte Mathematik, 1882, 92: 156-171 |
[28] | Langston P A, Tuzun U, Heyes D M. Discrete element simulation of granular flow in 2D and 3D hoppers—dependence of discharge rate and wall stress on particle interactions [J]. Chemical Engineering Science, 1995, 50: 967-987 |
[29] | Langston P A, Tuzun U, Heyes D M. Discrete element simulation of internal-stress and flow-fields in funnel flow hoppers [J]. Powder Technology, 1995, 85: 153-169 |
[30] | Zhou Y C, Wright B D, Yang R Y, Xu B H, Yu A B. Rolling friction in the dynamic simulation of sandpile formation [J]. Physica A, 1999, 269: 536-553 |
[31] | Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM [J]. Journal of Engineering Mechanics, ASCE, 1998, 124: 285-292 |
[32] | Iwashita K, Oda M. Micro-deformation mechanism of shear banding process based on modified distinct element method [J]. Powder Technology, 2000, 109: 192-205 |
[33] | Oda M, Iwashita K. Study on couple stress and shear band development in granular media based on numerical simulation analyses [J]. International Journal of Engineering Science, 2000, 38: 1713-1740 |
[34] | Chen J, Anandarajah A. van der Waals attraction between spherical particles [J]. Journal of Colloid and Interface Science, 1996, 180: 519-523 |
[35] | Dong K J, Zou R P, Yang R Y, Yu A B, Roach G. DEM simulation of cake formation in sedimentation and filtration [J]. Minerals Engineering, 2009, 22: 921-930 |
[36] | Zhang M H, Chu K W, Wei F, Yu A B. A CFD-DEM study of the cluster behavior in riser and downer reactors [J]. Powder Technology, 2008, 184: 151-165 |
[37] | Yang R Y, Zou R P, Yu A B. Computer simulation of the packing of fine particles [J]. Physical Review E, 2000, 62: 3900-3908 |
[38] | Moreno-Atanasio R, Antony S J, Williams R A. Influence of interparticle interactions on the kinetics of self-assembly and mechanical strength of nanoparticulate aggregates [J]. Particuology, 2009, 7: 106-113 |
[39] | Ye M, van der Hoef M A, Kuipers J A M. A numerical study of fluidization behavior of Geldart A particles using a discrete particle model [J]. Powder Technology, 2004, 139: 129-139 |
[40] | Lu N, Anderson M T, Likos W J, Mustoe G W. A discrete element model for kaolinite aggregate formation during sedimentation [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32: 965-980 |
[41] | Yu A B, Xu B H. Particle-scale modeling of gas-solid flow in fluidization [J]. Journal of Chemical Technology and Biotechnology, 2003, 78: 111-121 |
[42] | Royer J R, Evans D J, Oyarte L, Guo Q, Kapit E, Mobius M E, Waitukaitis S R, Jaeger H M. High-speed tracking of rupture and clustering freely falling granular streams [J]. Nature, 2009, 459: 1110-1113 |
[43] | Hamaker H C. The London-van der Waals attraction between spherical particles [J]. Physica, 1937, 4: 1058-1072 |
[44] | Mehrotra V P, Sastry K V S. Pendular bond strength between unequal-sized spherical particles [J]. Powder Technology, 1980, 25: 203-214 |
[45] | Lian G, Thornton C, Adams M J. A theoretical study of the liquid bridge forces between two rigid spherical bodies [J]. Journal of Colloid and Interface Science, 1993, 161: 138-147 |
[46] | Melrose J C, Wallick G C. Exact geometrical parameters for pendular ring fluid [J]. Journal of Physical Chemistry, 1967, 71: 3676-3677 |
[47] | Heady R B, Cahn J W. An analysis of capillary forces in liquid-phase sintering of spherical particles [J]. Metallurgical Transaction, 1970, 1: 185-189 |
[48] | Orr F M, Scriven L E, Rivas A P. Pendular rings between solids-meniscus properties and capillary force [J]. Journal of Fluid Mechanics, 1975, 67: 723-742 |
[49] | Pietsch W, Rumpf H. Adhesion capillary pressure liquid volume and angle of contact of a liquid bridge between 2 spheres [J]. Chemie Engenieur Technik, 1967, 39: 885-893 |
[50] | Pierrat P, Caram H S. Tensile strength of wet granular materials [J]. Powder Technology, 1997, 91: 83-93 |
[51] | Urso M E D, Lawrence C J, Adams M J. Pendular, funicular, and capillary bridges: results for two dimensions [J]. Journal of Colloid and Interface Science, 1999, 220: 42-56 |
[52] | Melrose J C. Model calculations for capillary condensation [J]. AIChE Journal, 1966, 12: 986-994 |
[53] | Kruyer S. The penetration of mercury and capillary condensation in packed spheres [J]. Transactions of the Faraday Society, 1958, 54: 1758-1767 |
[54] | Cross N L, Picknett R C. Liquid layer between a sphere and a plane surface [J]. Transactions of the Faraday Society, 1963, 59: 846-855 |
[55] | Erle M A, Dyson D C, Morrow N R. Liquid bridges between cylinder, in a torus, and between spheres [J]. AIChE Journal, 1971, 17: 115-121 |
[56] | Chen Y, Zhao Y, Gao H, Zheng J. Liquid bridge force between two unequal-sized spheres or a sphere and a plane [J]. Particuology, 2011, 9: 374-380 |
[57] | Zhang R, Li J. Simulation on mechanical behavior of cohesive soil by distinct element method [J]. Journal of Terramechanics, 2006, 43: 303-316 |
[58] | Hsiau S S, Yang S C. Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect of liquid bridges [J]. Chemical Engineering Science, 2003, 58: 339-351 |
[59] | Yang S C, Hsiau S S. The simulation of powders with liquid bridges in a 2D vibrated bed [J]. Chemical Engineering Science, 2001, 56: 6837-6849 |
[60] | Nase S T, Vargas W L, Abatan A A, McCarthy J J. Discrete characterization tools for cohesive granular material [J]. Powder Technology, 2001, 116: 214-223 |
[61] | Lian G, Thornton C, Adams M J. Discrete particle simulation of agglomerate impact coalescence [J]. Chemical Engineering Science, 1998, 53: 3381-3391 |
[62] | Gao Hongli (高红利), Chen Youchuan (陈友川), Zhao Yongzhi (赵永志), Zheng Jinyang (郑津洋). Simulation of mixing process for size-type binary wet particulate systems in a rotating horizontal drum by discrete element method [J]. Acta Physica Sinica (物理学报) , 2011, 60 (12): 124501 |
[63] | Ergun S. Fluid flow through packed columns [J]. Chemical Engineering and Processing, 1952, 48: 89-94 |
[64] | Wen C Y, Yu Y H. Mechanics of fluidization [J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111 |
[65] | Di Felice R. The voidage function for fluid-particle interaction systems [J]. International Journal of Multiphase Flow, 1994, 20: 153-159 |
[66] | Hoomans B P B, Kuipers J A M, Briels W J, van Swaaij W P M. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard sphere approach [J]. Chemical Engineering Science, 1996, 51: 99-118 |
[67] | Xu B H, Yu A B. Numerical simulation of the gas-particle flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52: 2785-2809 |
[68] | Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization [J]. Chemical Engineering Science, 1999, 54: 5809-5821 |
[69] | Rong D, Mikami T, Horio M. Particle and bubble movements around tubes immersed in fluidized beds—a numerical study [J]. Chemical Engineering Science, 1999, 54: 5737-5754 |
[70] | Kawaguchi T, Sakamoto M, Tanaka T, Tsuji Y. Quasi-three-dimensional numerical simulations of spouted beds in cylinder [J]. Powder Technology, 2000, 109: 3-12 |
[71] | Takeuchi S, Wang S, Rhodes M. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system [J]. Chemical Engineering Science, 2004, 59: 3495-3504 |
[72] | Limtrakul S, Boonsrirat A, Vatanatham T. DEM modeling and simulation of a catalytic gas-solid fluidized bed reactor: a spouted bed as a case study [J]. Chemical Engineering Science, 2004, 59: 5225-5231 |
[73] | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe [J]. Powder Technology, 1992, 71: 239-250 |
[74] | Watano S, Saito S, Suzuki T. Numerical simulation of electrostatic charge in powder pneumatic conveying process [J]. Powder Technology, 2003, 135/136: 112-117 |
[75] | Li J, Webb C, Pandiella S S, Campbell G M, Dyakowski T, Cowell A, McGlinchey D. Solid deposition in low-velocity slug flow pneumatic conveying [J]. Chemical Engineering and Processing, 2005, 44: 167-173 |
[76] | Ouyang J, Yu A B. Simulation of gas-solid flow in vertical pipe by hard-sphere model [J]. Particulate Science and Technology, 2005, 23: 47-61 |
[77] | Ouyang J, Li J. Particle-motion-resolved discrete model for simulating gas-solid fluidization [J]. Chemical Engineering Science, 1999, 54: 2077-2083 |
[78] | Zhao Y, Cheng Y, Wu C, Ding Y, Jin Y. Eulerian-Lagrangian simulation of distinct clustering phenomena and RTDs in riser and downer [J]. Particuology, 2010, 8: 44-50 |
[79] | Zhao Yongzhi (赵永志), Cheng Yi (程易), Jin Yong (金涌). Kinetic simulation of two-dimensional spouted bed with draft plates by discrete element method [J]. Chemical Engineering (China) (化学工程), 2007, 35 (6):24-28 |
[80] | Zhao Yongzhi (赵永志), Cheng Yi (程易). Particle-scale simulation of fluidized bed with immersed tubes [J]. Chemical Engineering (China) (化学工程), 2007, 35 (11):21-24 |
[81] | Zhao Y, Jiang M, Liu Y, Zheng J. Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube [J]. AIChE Journal, 2009, 55: 3109-3124 |
[82] | Tanaka T, Kawaguchi T, Tsuji Y. Discrete particle simulation of flow patterns in 2-dimensional gas-fluidized beds [J]. International Journal of Modern Physics B, 1993, 7: 1889-1898 |
[83] | Kawaguchi T, Tanaka T, Tsuji Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models) [J]. Powder Technology, 1998, 96: 129-138 |
[84] | Lu W M, Ju S P, Tung K L, Lu Y C. Stability analysis of perforated plate type single stage suspension fluidized bed without downcomer [J]. Korean Journal of Chemical Engineering, 1999, 16: 810-817 |
[85] | Lu H L, Wang S, Zhao Y H, Yang L, Gidaspow D, Ding J M. Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model [J]. Chemical Engineering Science, 2005, 60: 3217-3231 |
[86] | Yuu S, Umekage T, Johno Y. Numerical simulation of air and particle motions in bubbling fluidized bed of small particles [J]. Powder Technology, 2000, 110: 158-168 |
[87] | Xu B H, Feng Y Q, Yu A B, Chew S J, Zulli P. A numerical and experimental study of gas-solid flow in a fluid-bed reactor [J]. Powder Handling and Processing, 2001, 13: 71-76 |
[88] | Limtrakul S, Chalermwattanatai A, Unggurawirote K, Tsuji Y, Kawaguchi T, Tanthapanichakoon W. Discrete particle simulation of solids motion in a gas-solid fluidized bed [J]. Chemical Engineering Science, 2003, 58: 915-921 |
[89] | Feng Y Q, Xu B H, Zhang S J, Yu A B, Zulli P. Discrete particle simulation of gas fluidization of particle mixtures [J]. AIChE Journal, 2004, 50: 1713-1728 |
[90] | Rong D, Horio M. Behavior of particles and bubbles around immersed tubes in a fluidized bed at high temperature and pressure: a DEM simulation [J]. International Journal of Multiphase Flow, 2001, 27: 89-105 |
[91] | Chu K W, Yu A B. Numerical simulation of complex particle-fluid flows [J]. Powder Technology, 2008, 179: 104-114 |
[92] | Alobaid F, Ströhle J, Epple B. Extended CFD/DEM model for the simulation of circulating fluidized bed [J]. Advanced Powder Technology, 2013, 24: 403-415 |
[93] | He Y, Deen N G, van Sint Annaland M, Kuipers J A M. Gas-solid turbulent flow in a circulating fluidized bed riser: experimental and numerical study of monodisperse particle systems [J]. Industrial & Engineering Chemistry Research, 2009, 48: 8091-8097 |
[94] | Zhu J X, Yu Z Q, Jin Y, Grace J R, Issangya A. Cocurrent downflow circulating fluidized bed (downer) reactors—a state of the art review [J]. Canadian Journal of Chemical Engineering, 1995, 73: 662-677 |
[95] | Limtrakul S, Thanomboon N, Vatanatham T, Khongprom P. DEM modeling and simulation of a down-flow circulating fluidized bed [J]. Chemical Engineering Communications, 2008, 195: 1328-1344 |
[96] | Zhao T, Liu K, Cui Y, Takei M. Three-dimensional simulation of the particle distribution in a downer using CFD-DEM and comparison with the results of ECT experiments [J]. Advanced Powder Technology, 2010, 21: 630-640 |
[97] | Zhao Y, Ding Y, Wu C, Cheng Y. Numerical simulation of hydrodynamics in downers using a CFD-DEM coupled approach [J]. Powder Technology, 2010, 199: 2-12 |
[98] | Nakamura H, Watano S. Numerical modeling of particle fluidization behavior in a rotating fluidized bed [J]. Powder Technology, 2007, 171: 106-117. |
[99] | Nakamura H, Tokuda T, Iwasaki T, Watano S. Numerical analysis of particle mixing in a rotating fluidized bed [J]. Chemical Engineering Science, 2007, 62: 3043-3056 |
[100] | Nakamura H, Kondo T, Watano S. Improvement of particle mixing and fluidization quality in rotating fluidized bed by inclined injection of fluidizing air [J]. Chemical Engineering Science, 2013, 91: 70-78 |
[101] | Jiang Maoqiang (江茂强), Zhao Yongzhi (赵永志), Zheng Jinyang (郑津洋). Simulation of the behavior of gas-solid flow in a novel rotating fluidized bed in a static geometry [J]. The Chinese Journal of Process Engineering (过程工程学报), 2009, 9 (S2): 175-179 |
[102] | Yang S, Luo K, Fang M, Zhang K, Fan J. Parallel CFD-DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate [J]. Chemical Engineering Journal, 2014, 236: 158-170 |
[103] | Hassani M A, Zarghami R, Norouzi H R, Mostoufi N. Numerical investigation of effect of electrostatic forces on the hydrodynamics of gas-solid fluidized beds [J]. Powder Technology, 2013, 246: 16-25 |
[104] | Di Renzo A, Di Maio F P. Homogeneous and bubbling fluidization regimes in DEM-CFD simulations: hydrodynamic stability of gas and liquid fluidized beds [J]. Chemical Engineering Science, 2007, 62: 116-130 |
[105] | Di Renzo A, Cello F, Di Maio F P. Simulation of the layer inversion phenomenon in binary liquid-fluidized beds by DEM-CFD with a drag law for polydisperse systems [J]. Chemical Engineering Science, 2011, 66: 2945-2958 |
[106] | Wang S, Guo S, Gao J, Lan X, Dong Q, Li X. Simulation of flow behavior of liquid and particles in a liquid-solid fluidized bed [J]. Powder Technology, 2012, 224: 365-373 |
[107] | Li T, Guenther C. MFIX-DEM simulations of change of volumetric flow in fluidized beds due to chemical reactions [J]. Powder Technology, 2012, 220: 70-78 |
[108] | Geng Y, Che D. An extended DEM-CFD model for char combustion in a bubbling fluidized bed combustor of inert sand [J]. Chemical Engineering Science, 2011, 66: 207-219 |
[109] | Liu D, Chen X, Zhou W, Zhao C. Simulation of char and propane combustion in a fluidized bed by extending DEM-CFD approach [J]. Proceedings of the Combustion Institute, 2011, 33: 2701-2708 |
[110] | Simsek E, Brosch B, Wirtz S, Scherer V, Krüll F. Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM) [J]. Powder Technology, 2009, 193: 266-273 |
[111] | Zhou H, Mo G, Zhao J, Cen K. DEM-CFD simulation of the particle dispersion in a gas-solid two-phase flow for a fuel-rich/lean burner [J]. Fuel, 2011, 90: 1584-1590 |
[112] | Wu C, Cheng Y, Ding Y, Jin Y. CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process [J]. Chemical Engineering Science, 2010, 65: 542-549 |
[113] | Wu C, Yan B, Jin Y, Cheng Y. Modeling and simulation of chemically reacting flows in gas-solid catalytic and non-catalytic processes [J]. Particuology, 2010, 8: 525-530 |
[114] | Xiang J S, McGlinchey D. Numerical simulation of particle motion in dense phase pneumatic conveying [J]. Granular Matter, 2004, 6: 167-172 |
[115] | Li J, Webb C, Pandiella S S, Campbell G M, Dyakowski T, Cowell A, McGlinchey D. Solids deposition in low-velocity slug flow pneumatic conveying [J]. Chemical Engineering and Processing, 2005, 44: 167-173 |
[116] | Li J T, Mason D J. A computational investigation of transient heat transfer in pneumatic transport of granular particles [J]. Powder Technology, 2000, 112: 273-282 |
[117] | Lim E W C, Wang C H, Yu A B. Discrete element simulation for pneumatic conveying of granular material [J]. AIChE Journal, 2006, 52: 496-509 |
[118] | Lim E W C, Zhang Y, Wang C H. Effects of an electrostatic field in pneumatic conveying of granular materials through inclined and vertical pipes [J]. Chemical Engineering Science, 2006, 61: 7889-7908 |
[119] | Fraige F Y, Langston P A. Horizontal pneumatic conveying: a 3D distinct element model [J]. Granular Matter, 2006, 8: 67-80 |
[120] | Zhang Y, Lim E W C, Wang C H. Pneumatic transport of granular materials in an inclined conveying pipe: comparison of computational fluid dynamics-discrete element method (CFD-DEM), electrical capacitance tomography (ECT), and particle image velocimetry (PIV) results [J]. Industrial & Engineering Chemistry Research, 2007, 46: 6066-6083 |
[121] | Kuang S B, Chu K W, Yu A B, Zou Z S, Feng Y Q. Computational investigation of horizontal slug flow in pneumatic conveying [J]. Industrial & Engineering Chemistry Research, 2008, 47: 470-480 |
[122] | Kawaguchi T, Tanaka T, Tsuji Y. Numerical analysis of density wave in dense gas-solid flows in a vertical pipe [J]. Progress of Theoretical Physics Supplement, 2000, 138: 696-701 |
[123] | Xu M, Ge W, Li J H. A discrete particle model for particle-fluid flow with considerations of sub-grid structures [J]. Chemical Engineering Science, 2007, 62: 2302-2308 |
[124] | Chu K W, Wang Bo, Xu D L, Chen Y X, Yu A B. CFD-DEM simulation of the gas-solid flow in a cyclone separator [J]. Chemical Engineering Science, 2011, 66: 834-847 |
[125] | Feng Y Q, Pinson D, Yu A B, Chew S J, Zulli P. Numerical study of gas-solid flow in the raceway of a blast furnace [J]. Steel Research International, 2003, 74: 523-530 |
[126] | Nogami H, Yamaoka H, Takanani K. Raceway design for the innovative blast furnace [J]. ISIJ International, 2004, 44: 2150-2158 |
[127] | Umekage T, Yuu S, Kadowaki M. Numerical simulation of blast furnace raceway depth and height, and effect of wall cohesive matter on gas and coke particle flows [J]. ISIJ International, 2005, 45: 1416-1425 |
[128] | Yuu S, Umekage T, Miyahara T. Prediction of stable and unstable flows in blast furnace raceway using numerical simulation methods for gas and particles [J]. ISIJ International, 2005, 45: 1406-1415 |
[129] | Singh V, Gupta G S, Sarkar S. Study of gas cavity size hysteresis in a packed bed using DEM [J]. Chemical Engineering Science, 2007, 62: 6102-6111 |
[130] | Nakamura H, Iwasaki T, Watano S. Numerical simulation of film coating process in a novel rotating fluidized bed [J]. Chemical & Pharmaceutical Bulletin, 2006, 54: 839-846 |
[131] | Hilton J E, Ying D Y, Cleary P W. Modelling spray coating using a combined CFD-DEM and spherical harmonic formulation [J]. Chemical Engineering Science, 2013, 99: 141-160 |
[132] | Chou C S, Tseng C Y, Smid J, Kuo J T, Hsiau S S. Numerical simulation of flow patterns of disks in the asymmetric louvered-wall moving granular filter bed [J]. Powder Technology, 2000, 110: 239-245 |
[133] | Chou C S, Lee A F, Yeh C H. Gas-solid flow in a two-dimensional cross-flow moving granular filter bed with asymmetric boundary [J]. Particle & Particle Systems Characterization, 2007, 24: 210-222 |
[134] | Eppinger T, Seidler K, Kraume M. DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios [J]. Chemical Engineering Journal, 2011, 166: 324-331 |
[135] | Natsui S, Ueda S, Nogami H, Kano J, Inoue R, Ariyama T. Gas-solid flow simulation of fines clogging a packed bed using DEM-CFD [J]. Chemical Engineering Science, 2012, 71: 274-282 |
[136] | Tabib M V, Johansen S T, Amini S. A 3D CFD-DEM methodology for simulating industrial scale packed bed chemical looping combustion reactors [J]. Industrial & Engineering Chemistry Research, 2013, 52: 12041-12058 |
[137] | Li J T, Mason D J. Application of the discrete element modeling in air drying of particulate solids [J]. Drying Technology, 2002, 20: 255-282 |
[138] | Shi D, Vargas W L, McCarthy J J. Heat transfer in rotary kilns with interstitial gases [J]. Chemical Engineering Science, 2008, 63: 4506-4516 |
[139] | Han T, Kalman H, Levy A. DEM simulation of particle comminution in jet milling [J]. Particulate Science and Technology, 2002, 20: 325-340 |
[140] | Goldschmidt M J V, Weijers G G C, Boerefijn R, Kuipers J A M. Discrete element modeling of fluidized bed spray granulation [J]. Powder Technology, 2003, 138: 39-45 |
[141] | Kafui K D, Thornton C. Fully-3D DEM simulation of fluidized bed spray granulation using an exploratory surface energy-based spray zone concept [J]. Powder Technology, 2008, 184: 177-188 |
[142] | Dong K J, Guo B Y, Chu K W, Yu A B, Brake I. Simulation of liquid-solid flow in a coal distributor [J]. Minerals Engineering, 2008, 21: 789-796. |
[143] | Guo Y, Wu C Y, Kafui K D, Thornton C. Numerical analysis of density-induced segregation during die filling [J]. Powder Technology, 2009, 197: 111-119 |
[144] | Jayasundara C T, Yang R Y, Guo B Y, Yu A B, Rubenstein J. Effect of slurry properties on particle motion in IsaMills [J]. Minerals Engineering, 2009, 22: 886-892 |
[145] | Wong W, Fletcher D F, Traini D, Chan H K, Young P M. The use of computational approaches in inhaler development [J]. Advanced Drug Delivery Reviews, 2012, 64: 312-322 |
[146] | Fernández X R, Nirschl H. Simulation of particles and sediment behavior in centrifugal field by coupling CFD and DEM [J]. Chemical Engineering Science, 2013, 94: 7-19 |
[147] | Tan Y, Zhang H, Yang D, Jiang S, Song J, Sheng Y. Numerical simulation of concrete pumping process and investigation of wear mechanism of the piping wall [J]. Tribology International, 2012, 46: 137-144 |
[148] | Varga M, Goniva C, Adam K, Badisch E. Combined experimental and numerical approach for wear prediction in feed pipes [J]. Tribology International, 2013, 65: 200-206 |
[149] | Tsuji T, Yabumoto K, Tanaka T. Spontaneous structures in three-dimensional bubbling gas-fluidized bed by parallel DEM-CFD coupling simulation [J]. Powder Technology, 2008, 184: 132-140 |
[150] | Kafui D K, Johnson S, Thornton C, Seville J P K. Parallelization of a Lagrangian-Eulerian DEM/CFD code for application to fluidized beds [J]. Powder Technology, 2011, 207: 270-278 |
[151] | Jajcevic D, Siegmann E, Radeke C, Khinast J G. Large-scale CFD-DEM simulations of fluidized granular systems [J]. Chemical Engineering Science, 2013, 98: 298-310 |
[152] | Amritkar A, Deb S, Tafti D. Efficient parallel CFD-DEM simulations using OpenMP [J]. Journal of Computational Physics, 2014, 256: 501-519 |
[153] | Zhou Z Y, Pinson D, Zou R P, Yu A B. Discrete particle simulation of gas fluidization of ellipsoidal particles [J]. Chemical Engineering Science, 2011, 66: 6128-6145 |
[154] | Ren B, Zhong W, Chen Y, Chen X, Jin B, Yuan Z, Lu Y. CFD-DEM simulation of spouting of corn-shaped particles [J]. Particuology, 2012, 10: 562-572 |
[155] | Guo Y, Wu C Y, Thornton C. Modeling gas-particle two-phase flows with complex and moving boundaries using DEM-CFD with an immersed boundary method [J]. AIChE Journal, 2013, 59: 1075-1087 |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[6] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[9] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[10] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[11] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[12] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[13] | Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913. |
[14] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[15] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||