CIESC Journal ›› 2014, Vol. 65 ›› Issue (7): 2645-2656.DOI: 10.3969/j.issn.0438-1157.2014.07.024
Previous Articles Next Articles
CAO Yonghai, LI Bo, YU Hao, PENG Feng, WANG Hongjuan
Received:
2014-03-18
Revised:
2014-03-25
Online:
2014-07-05
Published:
2014-07-05
Supported by:
supported by the National Natural Science Foundation of China (21133010, 21273079), the Guangdong Natural Science Funds for Distinguished Young Scholar (S20120011275), the Program for New Century Excellent Talents in University (NCET-12-0190) and the Fundamental Research Funds for the Central Universities of China (2014ZG0005).
曹永海, 李博, 余皓, 彭峰, 王红娟
通讯作者:
余皓
基金资助:
国家自然科学基金项目(21133010,21273079);广东省自然科学杰出青年基金项目(S20120011275);教育部新世纪优秀人才支持计划项目(NCET-12-0190);中央高校基本科研业务费项目(2014ZG0005)。
CLC Number:
CAO Yonghai, LI Bo, YU Hao, PENG Feng, WANG Hongjuan. Advances in catalytic oxidations catalyzed by carbon nanomaterials in liquid-phase[J]. CIESC Journal, 2014, 65(7): 2645-2656.
曹永海, 李博, 余皓, 彭峰, 王红娟. 纳米碳材料催化液相选择性氧化的研究进展[J]. 化工学报, 2014, 65(7): 2645-2656.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.3969/j.issn.0438-1157.2014.07.024
[1] | Kutzelnigg Artur. Zur Kenntnis der sauerstoff‐übertragenden Wirkung von Stoffen mit großer spezifischer Oberfläche [J]. Berichte der deutschen chemischen Gesellschaft (A and B Series), 1930, 63(7): 1753-1758 |
[2] | Kolthoff I M. Properties of active charcoal reactivated in oxygen at 400℃ [J]. Journal of the American Chemical Society, 1932, 54(12): 4473-4480 |
[3] | Smalley Richard E, Kroto H W, Heath J R. C60: buckminsterfullerene [J]. Nature, 1985, 318(6042): 162-163 |
[4] | Iijima Sumio. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58 |
[5] | Novoselov Kostya S, Geim Andre K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669 |
[6] | Gogotsi Yury, Presser Volker. Carbon Nanomaterials [M]. Boca Raton: CRC Press,2010 |
[7] | Su Dangsheng, Perathoner Siglinda, Centi Gabriele. Nanocarbons for the development of advanced catalysts [J]. Chemical Reviews, 2013, 113(8): 5782-5816 |
[8] | Su Dangsheng, Zhang Jian, Frank Benjamin, Thomas Arne, Wang Xinchen, Paraknowitsch Jens, Schlogl Robert. Metal-free heterogeneous catalysis for sustainable chemistry [J]. ChemSusChem, 2010, 3(2): 169-180 |
[9] | Suresh A K, Sharma M M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons [J]. Industrial & Engineering Chemistry Research, 2000, 39(11): 3958-3997 |
[10] | Rao Xinghe(饶兴鹤). The global progress of the adipic acid production and technology [J]. China Petroleum and Chemical Industry(中国石油和化工), 2005, 7: 70-73 |
[11] | Yang Xueping(杨学萍). Advances in the catalytic systems for synthesis of terephthalic acid via oxidation of paraxylene [J]. Industrial Catalysis(工业催化), 2004, 12(6): 25-29 |
[12] | Tomas R A, Bordado J C M, Gomes J F P. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development [J]. Chemical Reviews, 2013, 113(10): 7421-7469 |
[13] | Zhang Jian, Su Dangsheng, Blume Raoul, Schlögl Robert, Wang Rui, Yang Xiangguang, Gajovi? Andreja. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene [J]. Angewandte Chemie International Edition, 2010, 49(46): 8640-8644 |
[14] | Yang Jinghe, Sun Geng, Gao Yongjun, Zhao Huabo, Tang Pei, Tan Juan, Lu Anhui, Ma Ding. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst [J]. Energy & Environmental Science, 2013, 6(3): 793-798 |
[15] | Atamny F, Blöcker J, Dübotzky A, Kurt H, Timpe O, Loose G, Mahdi W, Schlögl R. Surface chemistry of carbon: activation of molecular oxygen [J]. Molecular Physics, 1992, 76(4): 851-886 |
[16] | Liu Xi, Frank Benjamin, Zhang Wei, Cotter Thomas P, Schlögl Robert, Su Dangsheng. Carbon-catalyzed oxidative dehydrogenation of n-butane: selective site formation during sp(3)-to-sp(2) lattice rearrangement [J]. Angewandte Chemie International Edition, 2011, 50(14): 3318-3322 |
[17] | Nabae Y, Rokubuichi H, Mikuni M, Kuang Y B, Hayakawa T, Kakimoto M. Catalysis by carbon materials for the aerobic Baeyer-Villiger oxidation in the presence of aldehydes [J]. ACS Catalysis, 2013, 3(2): 230-236 |
[18] | Cao Yonghai, Luo Xianyu, Yu Hao, Peng Feng, Wang Hongjuan, Ning Guoqing. sp2- and sp3-hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane [J]. Catalysis Science & Technology, 2013, 3: 2654-2660 |
[19] | Engel Paul S, Billups Wilbur E, Abmayr David W, Tsvaygboym Konstantin, Wang Runtang. Reaction of single-walled carbon nanotubes with organic peroxides [J]. The Journal of Physical Chemistry C, 2008, 112(3): 695-700 |
[20] | Hermans I, Peeters J, Jacobs P A. Autoxidation of hydrocarbons: from chemistry to catalysis [J]. Topics in Catalysis, 2008, 50(1-4): 124-132 |
[21] | Bartholomé Ernst, Ullmann Fritz. Ullmanns Encyklopädie der technischen Chemie[M]. Weinheim: Verlag Chemie, 1972 |
[22] | Schuchardt U, Cardoso D, Sercheli R, Pereira R, de Cruz R S, Guerreiro M C, Mandelli D, Spinace E V, Fires E L. Cyclohexane oxidation continues to be a challenge [J]. Applied Catalysis A: General, 2001, 211(1): 1-17 |
[23] | Li Xinhao, Chen Jiesheng, Wang Xinchen, Sun Jianhua, Antonietti Markus. Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons [J]. Journal of the American Chemical Society, 2011, 133(21): 8074-8077 |
[24] | Yu Hao, Peng Feng, Tan Jun, Hu Xiaowei, Wang Hongjuan, Yang Jian, Zheng Wenxu. Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes [J]. Angewandte Chemie International Edition, 2011, 50(17): 3978-3982 |
[25] | Spier Eyal, Neuenschwander Ulrich, Hermans Ive. Insights in the cobalt(Ⅱ)-catalyzed decomposition of peroxide [J]. Angewandte Chemie International Edition, 2012, 52(5): 1581-1585 |
[26] | Hermans I, Jacobs P A, Peeters J. To the core of autocatalysis in cyclohexane autoxidation [J]. Chemistry A European Journal, 2006, 12(16): 4229-4240 |
[27] | Yang Xixian, Wang Hongjuan, Li Jing, Zheng Wenxu, Xiang Rong, Tang Zikang, Yu Hao, Peng Feng. Mechanistic insight into catalytic oxidation of cyclohexane over carbon nanotubes: kinetics and in-situ spectroscopic evidences [J]. Chemistry A European Journal, 2013, 19(30): 9818-9824 |
[28] | Hermans I, Nguyen T L, Jacobs P A, Peeters J. Autoxidation of cyclohexane: conventional views challenged by theory and experiment [J]. ChemPhysChem, 2005, 6(4): 637-645 |
[29] | Cao Yonghai, Yu Hao, Tan Jun, Peng Feng, Wang Hongjuan, Li Jing, Zheng Wenxu, Wong N B. Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane [J]. Carbon, 2013, 57: 433-442 |
[30] | Gao Yongjun, Hu Gang, Zhong Jun, Shi Zujin, Zhu Yuanshuai, Su Dangsheng, Wang Jianguo, Bao Xinhe, Ma Ding. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation [J]. Angewandte Chemie International Edition, 2013, 52(7): 2109-2113 |
[31] | Yang Xixian, Yu Hao, Peng Feng, Wang Hongjuan. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane [J]. ChemSusChem, 2012, 5(7): 1213-1217 |
[32] | Luo Jin, Peng Feng, Yu Hao, Wang Hongjuan, Zheng Wenxu. Aerobic liquid-phase oxidation of ethylbenzene to acetophenone catalyzed by carbon nanotubes [J]. ChemCatChem, 2013, 5(6): 1578-1586 |
[33] | Liao Shixia, Chi Yumei, Yu Hao, Wang Hongjuan, Peng Feng. Tuning the selectivity in the aerobic oxidation of cumene catalyzed by nitrogen‐doped carbon nanotubes [J]. ChemCatChem, 2014, 6(2): 555-560 |
[34] | Hayashi Masahiko. Oxidation using activated carbon and molecular oxygen system [J]. The Chemical Record, 2008, 8(4): 252-267 |
[35] | Kuang Yongbo, Islam Nazrul M, Nabae Yuta, Hayakawa Teruaki, Kakimoto Masaaki. Selective aerobic oxidation of benzylic alcohols catalyzed by carbon‐based catalysts: a nonmetallic oxidation system [J]. Angewandte Chemie International Edition, 2010, 49(2): 436-440 |
[36] | Kuang Yongbo, Rokubuichi Hodaka, Nabae Yuta, Hayakawa Teruaki, Kakimoto Masaaki. A nitric acid-assisted carbon-catalyzed oxidation system with nitroxide radical cocatalysts as an efficient and green protocol for selective aerobic oxidation of alcohols [J]. Advanced Synthesis & Catalysis, 2010, 352(14/15): 2635-2642 |
[37] | Luo Jin, Peng Feng, Yu Hao, Wang Hongjuan. Selective liquid phase oxidation of benzyl alcohol catalyzed by carbon nanotubes [J]. Chemical Engineering Journal, 2012, 204: 98-106 |
[38] | Luo Jin, Peng Feng, Wang Hongjuan, Yu Hao. Enhancing the catalytic activity of carbon nanotubes by nitrogen doping in the selective liquid phase oxidation of benzyl alcohol [J]. Catalysis Communications, 2013, 39: 44-49 |
[39] | Long Jinlin, Xie Xiuqiang, Xu Jie, Gu Quan, Chen Liming, Wang Xuxu. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols [J]. ACS Catalysis, 2012, 2(4): 622-631 |
[40] | Luo Jin, Yu Hao, Wang Hongjuan, Wang Haihui, Peng Feng. Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter [J]. Chemical Engineering Journal, 2014, 240: 434-442 |
[41] | Besson Michèle, Blackburn Andy, Gallezot Pierre, Kozynchenko Oleksander, Pigamo Anne, Tennison Steve. Oxidation with air of cyclohexanone to carboxylic diacids on carbon catalysts [J]. Topics in Catalysis, 2000, 13(3): 253-257 |
[42] | Besson Michèle, Gallezot Pierre, Perrard Alain, Pinel Catherine. Active carbons as catalysts for liquid phase reactions [J]. Catalysis Today, 2005, 102/103: 160-165 |
[43] | Pigamo Anne, Besson Michèle, Blanc Bernard, Gallezot Pierre, Blackburn Andy, Kozynchenko Oleksandr, Tennison Steve, Crezee Edwin, Kapteijn Freek. Effect of oxygen functional groups on synthetic carbons on liquid phase oxidation of cyclohexanone [J]. Carbon, 2002, 40(8): 1267-1278 |
[44] | Baeyer Adolf, Villiger Victor. Einwirkung des caro'schen reagens auf ketone [J]. Berichte der Deutschen Chemischen Gesellschaft, 1899, 32(3): 3625-3633 |
[45] | Li Yuefang, Guo Mingqi, Yin Shuangfeng, Chen Lang, Zhou Yongbo, Qiu Renhua, Au Chaktong. Graphite as a highly efficient and stable catalyst for the production of lactones [J]. Carbon, 2013, 55: 269-275 |
[46] | Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst [J]. Applied Catalysis B: Environmental, 1998, 19(3): 165-173 |
[47] | Santiago Marta, Stüber Frank, Fortuny Agustí, Fabregat Azael, Font Josep. Modified activated carbons for catalytic wet air oxidation of phenol [J]. Carbon, 2005, 43(10): 2134-2145 |
[48] | Creanga Manole Carmen, Ayral Catherine, Julcour Lebigue Carine, Wilhelm Anne-Marie, Delmas Henri. Catalytic wet air oxidation of aqueous organic mixtures [J]. International Journal of Chemical Reactor Engineering, 2007, 5(1): 1-10 |
[49] | Quintanilla A, Casas J A, Rodríguez J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts [J]. Applied Catalysis B: Environmental, 2007, 76(1): 135-145 |
[50] | Suarez-Ojeda M Eugenia, Stüber Frank, Fortuny Agustí, Fabregat Azael, Carrera Julián, Font Josep. Catalytic wet air oxidation of substituted phenols using activated carbon as catalyst [J]. Applied Catalysis B: Environmental, 2005, 58(1): 105-114 |
[51] | Santos Aurora, Yustos Pedro, Rodriguez Sergio, Garcia-Ochoa Felix. Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media [J]. Applied Catalysis B: Environmental, 2006, 65(3): 269-281 |
[52] | Yang Shaoxia, Li Xiang, Zhu Wanpeng, Wang Jianbing, Descorme Claude. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol [J]. Carbon, 2008, 46(3): 445-452 |
[53] | Soria-Sánchez M, Maroto-Valiente A, Alvarez-Rodriguez J, Munoz-Andres V, Rodriguez-Ramos I, Guerrero-Ruíz A. Carbon nanostructured materials as direct catalysts for phenol oxidation in aqueous phase [J]. Applied Catalysis B: Environmental, 2011, 104(1): 101-109 |
[54] | Sun Hongqi, Wang Yuxian, Liu Shizhen, Ge Lei, Wang Li, Zhu Zhonghua, Wang Shaobin. Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation [J]. Chemical Communications, 2013, 49(85): 9914-9916 |
[55] | Li Ning, Descorme Claude, Besson Michèle. Catalytic wet air oxidation of aqueous solution of 2-chlorophenol over Ru/zirconia catalysts [J]. Applied Catalysis B: Environmental, 2007, 71(3): 262-270 |
[56] | Yang Shaoxia, Zhu Wanpeng, Wang Xingang. Influence of the structure of TiO2, CeO2, and CeO2-TiO2 supports on the activity of Ru catalysts in the catalytic wet air oxidation of acetic acid [J]. Rare Metals, 2011, 30(5): 488-495 |
[57] | Rocha Raquel P, Sousa Juliana P S, Silva Adrián M T, Pereira Manuel F R, Figueiredo José L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry [J]. Applied Catalysis B: Environmental, 2011, 104(3): 330-336 |
[58] | Yang Shaoxia, Wang Xingang, Yang Hongwei, Sun Yu, Liu Yunxia. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol [J]. Journal of Hazardous Materials, 2012, 233/234: 18-24 |
[59] | Aguilar Croswel, García Rafael, Soto-Garrido Gabriela, Arraigada Renan. Catalytic oxidation of aqueous methyl and dimethylamines by activated carbon [J]. Topics in Catalysis, 2005, 33(1/2/3/4): 201-206 |
[60] | Aguilar Croswel, García Rafael, Soto-Garrido Gabriela, Arriagada Renan. Catalytic wet air oxidation of aqueous ammonia with activated carbon [J]. Applied Catalysis B: Environmental, 2003, 46(2): 229-237 |
[61] | Chen Honglin, Yang Guo, Feng Yujun, Shi Changli, Xu Shirong, Cao Weiping, Zhang Xiaoming. Biodegradability enhancement of coking wastewater by catalytic wet air oxidation using aminated activated carbon as catalyst [J]. Chemical Engineering Journal, 2012, 198: 45-51 |
[62] | Barbier J, Delanoë F, Jabouille F, Duprez D, Blanchard G, Isnard P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts [J]. Journal of Catalysis, 1998, 177(2): 378-385 |
[63] | Rivas F J, Kolaczkowski S T, Beltran F J, McLurgh D B. Development of a model for the wet air oxidation of phenol based on a free radical mechanism [J]. Chemical Engineering Science, 1998, 53(14): 2575-2586 |
[64] | Song Shaoqing, Yang Hongxiao, Rao Richuan, Liu Huade, Zhang Aimin. Defects of multi-walled carbon nanotubes as active sites for benzene hydroxylation to phenol in the presence of H2O2 [J]. Catalysis Communications, 2010, 11(8): 783-787 |
[65] | Thangaraj A, Kumar R, Ratnasamy P. Direct catalytic hydroxylation of benzene with hydrogen peroxide over titanium-silicate zeolites [J]. Applied Catalysis, 1990, 57(1): L1-L3 |
[66] | Bhaumik Asim, Mukherjee Priyabrata, Kumar Rajiv. Triphase catalysis over titanium-silicate molecular sieves under solvent-free conditions(Ⅰ): Direct hydroxylation of benzene [J]. Journal of Catalysis, 1998, 178(1): 101-107 |
[67] | Thangaraj A, Kumar R, Ratnasamy P. Catalytic properties of crystalline titanium silicalites(Ⅱ): Hydroxylation of phenol with hydrogen peroxide over TS-1 zeolites [J]. Journal of Catalysis, 1991, 131(1): 294-297 |
[68] | Flanigen E M, Patton R L, Wilson S T, Grobet P J. Innovation in zeolite materials science [J]. Studies in Surface Science and Catalysis, 1988, 37: 13-27 |
[69] | Ji Hongbing(纪红兵), She Yuanbin(佘远斌). Green Oxidation & Reducion(绿色氧化与还原)[M]. Beijing:China Petrochemical Press,2005 |
[70] | Kang Zhenhui, Wang Enbo, Mao Baodong, Su Zhongmin, Gao Lei, Niu Li, Shan Hongyan, Xu Lin. Heterogeneous hydroxylation catalyzed by multi-walled carbon nanotubes at low temperature [J]. Applied Catalysis A: General, 2006, 299: 212-217 |
[71] | Hasnat M A, Rahman M Maria, Borhanuddin S M, Siddiqua Ayesha, Bahadur N M, Karim M R. Efficient hydrogen peroxide decomposition on bimetallic Pt-Pd surfaces [J]. Catalysis Communications, 2010, 12(4): 286-291 |
[72] | Croston M, Langston J, Sangoi R, Santhanam K S V. Catalytic oxidation of p-toluidine at multiwalled functionalized carbon nanotubes [J]. International Journal of Nanoscience, 2002, 1(3/4): 277-283 |
[73] | Zali A, Shokrolahi A, Keshavarz M H, Zarei M A. Carbon-based solid acid catalyzed highly efficient selective oxidations of sulfides to sulfoxides or sulfones with hydrogen peroxide [J]. Acta Chimica Slovenica, 2008, 55(2): 257-260 |
[74] | Shokrolahi A, Zali A, Keshavarz M H. Oxidation of organic compounds by sulfonated porous carbon and hydrogen peroxide [J]. Chinese Journal of Catalysis, 2010, 31(11): 1427-1432 |
[75] | Zhou Lipeng, Dong Beibei, Tang Si, Ma Hong, Chen Chen, Yang Xiaomei, Xu Jie. Sulfonated carbon catalyzed oxidation of aldehydes to carboxylic acids by hydrogen peroxide [J]. Journal of Energy Chemistry, 2013, 22(4): 659-664 |
[76] | Domínguez M C, Quintanilla A, Ocón P, Casas A J, Rodriguez J J. The use of cyclic voltammetry to assess the activity of carbon materials for hydrogen peroxide decomposition [J]. Carbon, 2013, 60: 76-83 |
[77] | Lücking F, Köser H, Jank M, Ritter A. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution [J]. Water Research, 1998, 32(9): 2607-2614 |
[78] | Jia Hongpeng, Dreyer Daniel R, Bielawski Christopher W. Graphite oxide as an auto-tandem oxidation-hydration-aldol coupling catalyst [J]. Advanced Synthesis & Catalysis, 2011, 353(4): 528-532 |
[79] | Dreyer Daniel R, Park Sungjin, Bielawski Christopher W, Ruoff Rodney S. The chemistry of graphene oxide [J]. Chemical Society Reviews, 2010, 39(1): 228-240 |
[80] | Dreyer Daniel R, Jia Hongpeng, Bielawski Christopher W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions [J]. Angewandte Chemie, 2010, 122(38): 6965-6968 |
[81] | Mirza-Aghayan M, Kashef-Azar E, Boukherroub R. Graphite oxide: an efficient reagent for oxidation of alcohols under sonication [J]. Tetrahedron Letters, 2012, 53(37): 4962-4965 |
[82] | Dreyer Daniel R, Jia Hongpeng, Todd Alexander D, Geng Jianxin, Bielawski Christopher W. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides [J]. Organic & Biomolecular Chemistry, 2011, 9(21): 7292-7295 |
[83] | Adams Joseph P. Imines, enamines and oximes [J]. Journal of the Chemical Society, Perkin Transactions 1, 2000(2): 125-139 |
[84] | Uematsu Nobuyuki, Fujii Akio, Hashiguchi Shohei, Ikariya Takao, Noyori Ryoji. Asymmetric transfer hydrogenation of imines [J]. Journal of the American Chemical Society, 1996, 118(20): 4916-4917 |
[85] | Evindar Ghotas, Batey Robert A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides [J]. The Journal of Organic Chemistry, 2006, 71(5): 1802-1808 |
[86] | Choudary B M, Bharathi B, Venkat Reddy C, Lakshmi Kantam M. The first example of heterogeneous oxidation of secondary amines by tungstate-exchanged Mg-Al layered double hydroxides: a green protocol [J]. Green Chemistry, 2002, 4(3): 279-284 |
[87] | Grirrane Abdessamad, Corma Avelino, Garcia Hermenegildo. Highly active and selective gold catalysts for the aerobic oxidative condensation of benzylamines to imines and one-pot, two-step synthesis of secondary benzylamines [J]. Journal of Catalysis, 2009, 264(2): 138-144 |
[88] | Huang Hai, Huang Jun, Liu Yongmei, He Heyong, Cao Yong, Fan Kangnian. Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines [J]. Green Chemistry, 2012, 14(4): 930-934 |
[89] | Zhu Bolin, Lazar Mihaela, Trewyn Brian G, Angelici Robert J. Aerobic oxidation of amines to imines catalyzed by bulk gold powder and by alumina-supported gold [J]. Journal of Catalysis, 2008, 260(1): 1-6 |
[90] | Nagai M, Isoe R, Ishiguro K, Tominaga H, Shimizu M. Graphite and graphene oxides catalyze bromination or alkylation in reaction of phenol with t-butylbromide [J]. Chemical Engineering Journal, 2012, 207: 938-942 |
[91] | Yeh Tefu, Syu Jhihming, Cheng Ching, Chang Tingtsiang, Teng Hsisheng. Graphite oxide as a photocatalyst for hydrogen production from water [J]. Advanced Functional Materials, 2010, 20(14): 2255-2262 |
[92] | Patel V. Global carbon nanotubes market-Industry beckons [OL]. [2013-01-10]. http://www.nanowerk.com/spotlight/spotid=23118.php |
[93] | Li Xiaoping. A first mass production line of graphene come into operation[OL].[2013-12-23].http://epaper.stcn.com/paper/zqsb/html/2013-12/23/content_529829.htm |
[1] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[8] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[9] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[14] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[15] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||