1 Moffat, H., Jensen, K., “Three-dimensional flow effects in silicon CVD in horizontal reactors”, J. Electrochem. Soc., 135, 459-466 (1988). 2 Vanka, S., Luo, G., Glumac, N., “Parametric effects on thin film growth and uniformity in an atmospheric pressure impinging jet CVD reactor”, J. Cryst. Growth, 267, 22-34 (2004). 3 Oh, I., Takoudis, C., Neudeck, G., “Mathematical modeling of epitaxial silicon growth in pancake Chemical Vapor Deposition reactors”, J. Electrochem. Soc., 138, 554-562 (1991). 4 Kuwana, K., Andrews, R., Grulke, E.A., Saito, K., “CFD analysis on a vortex enhanced CVD reactor design”, in Symposium on Making Functional Materials with Nanotubes held at the 2001 MRS Fall Meeting, P. Bernier, P. Ajayan, Y. Iwasa, P. Nikolaev, eds, Materials Research Society, Boston, MA, 61-66 (2001). 5 Wang, A.Y., Lee, K., Sun, C., Wen, L.S., “Simulations of the dependence of gas physical parameters on deposition variables during HFCVD diamond films”, J. Mater. Sci. Technol., 22, 599-604 (2006). 6 Luo, G., Vanka, S.P., Glumac, N., “Fluid flow and transport processes in a large area atmospheric pressure stagnation flow CVD reactor for deposition of thin films”, Int. J. Heat Mass Transfer, 47,4979-4994 (2004). 7 Oda, A., Suda, Y., Okita, A., “Numerical analysis of pressure dependence on carbon nanotube growth in CH4/H2 plasmas”, Thin Solid Films, 516, 6570-6574 (2007). 8 Leakeas, C.L., Sharif, M.A.R., “Effects of thermal diffusion and substrate temperature on silicon deposition in an impinging-jet CVD reactor”, Numer. Heat Tranfer A Appl., 44, 127-147 (2003). 9 Zhuang, Q., Guo, H., Heberlein, J., Pfender, E., “Effect of substrate temperature distribution on thermal plasma jet CVD of diamond”, Diamond Relat. Mater., 3, 319-324 (1994). 10 Xu, Q., Baciou, L., Sebban, P., Gunner, M., “Exploring the energy landscape for Q(A)(-) to Q(B) electron transfer in bacterial photosynthetic reaction centers: Effect of substrate position and tail length on the conformational gating step”, Biochemistry, 41, 10021-10025 (2002). 11 Sharifi, Y., Achenie, L.E.K., “Effect of substrate geometry on the deposition rate in chemical vapor deposition”, J. Cryst. Growth, 304,520-525 (2007). 12 Cheng, T.S., Hsiao, M.C., “Numerical investigations of geometric effects on flow and thermal fields in a horizontal CVD reactor”, J. Cryst. Growth, 310, 3097-3106 (2008). 13 Asmann, M., Borges, C., Heberlein, J., Pfender, E., “The effects of substrate rotation on thermal plasma chemical vapor deposition of diamond”, Surf. Coat. Technol., 142, 724-732 (2000). 14 Salinger, A.G., Pawlowski, R.P., Shadid, J.N., van Bloemen Waanders, B.G., “Computational analysis and optimization of a chemical vapor deposition reactor with large-scale computing”, Ind. Eng. Chem. Res., 43, 4612-4623 (2004). 15 Kunz, T., Burkert, I., Auer, R., Lovtsus, A.A., Talalaev, R.A., Makarov, Y.N., “Convection-assisted chemical vapor deposition (CoCVD) of silicon on large-area substrates”, J. Cryst. Growth, 310,1112-1117 (2008). 16 Kleijn, C., Dorsman, R., Kuijlaars, K., Okkerse, M., van Santen, H., “Multi-scale modeling of chemical vapor deposition processes for thin film technology”, J. Cryst. Growth, 303, 362-380 (2006). 17 Pierson, H., Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications, Noyes Publications, NY, USA, 32-43 (1999). 18 Yang, Y., Zhang, W., “Kinetic and microstructure of SiC deposited from SiCl4 -CH4 -H2 ”, Chin. J. Chem. Eng., 17, 419-426 (2009). 19 Coltrin, M., Kee, R., Evans, G., “A mathematical model of the fluid mechanics and gas-phase chemistry in a rotating disk chemical vapor deposition reactor”, J. Electrochem. Soc., 136, 819-829 (1989). 20 Arora, R., Pollard, R., “A mathematical model for chemical vapor deposition processes influenced by surface reaction kinetics: Application to low-pressure deposition of tungsten”, J. Electrochem. Soc.,138, 1523-1537 (1991). 21 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., Tarui, Y., “Investigation on leakage current reduction of photo-CVD tantalum oxide films accomplished by active oxygen annealing”, J. Electrochem. Soc., 139, 320-328 (1992). 22 Kommu, S., Khomami, B., “High-volume single-wafer reactors for silicon epitaxy”, Ind. Eng. Chem. Res, 41, 732-743(2002). 23 Kleijn, C., “Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition—A benchmark solution”, Thin Solid Films, 365, 294-306 (2000). 24 Habuka, H., Nagoya, T., Mayusumi, M., Katayama, M., Shimada, M., Okuyama, K., “Model on transport phenomena and epitaxial growth of silicon thin film in SiHCl3 -H2 system under atmospheric pressure”, J. Cryst. Growth, 169, 61-72 (1996). 25 Yang, S., Yang, Q., Sun, Z., “Nucleation and growth of diamond on titanium silicon carbide by microwave plasma-enhanced chemical vapor deposition”, J. Cryst. Growth, 294, 452-458 (2006). 26 Mills, R., Sankar, J., Voigt, A., He, J., Ray, P., Dhandapani, B., “Role of atomic hydrogen density and energy in low power chemical vapor deposition synthesis of diamond films”, Thin Solid Films, 478,77-90 (2005). 27 Zhang, X.D., Zhang, F.R., Amanatides, E., Mataras, D., Zhao, Y., “Effect of substrate bias on the plasma enhanced chemical vapor deposition of microcrystalline silicon thin films”, Thin Solid Films,516, 6912-6918 (2008). 28 Ho, P., Balakrishna, A., Chacin, J., Thilderkvist, A., Haas, B., Comita, P., “Chemical kinetics for modelling silicon epitaxy from chlorosilanes”, In: 194th Meeting of the Electrochemical Society, The Electrochemical Society, Inc., New Jersey, 117-122 (1998). 29 Valente, G., Cavallotti, C., Masi, M., Carr, S., “Reduced order model for the CVD of epitaxial silicon from silane and chlorosilanes”, J. Cryst. Growth, 230, 247-257 (2001). 30 Balakrishna, A., Chacin, J.M., Comita, P.B., Haas, B., Ho, P., Thilderkvist, A., “Chemical kinetics for modeling silicon epitaxy from chlorosilanes”, in 194th Meeting of the Electrochemical Society, US DOE, MA,1-6 (1998). 31 Endo, H., Kuwana, K., Saito, K., Qian, D., Andrews, R., Grulke, E., “CFD prediction of carbon nanotube production rate in a CVD reactor”, Chem. Phys. Lett., 387, 307-311 (2004). 32 Khanafer, K., Lightstone, M., “Computational modeling of transport phenomena in chemical vapor deposition”, Heat Mass Transfer., 41,483-494 (2005). 33 van Santen, H., Kleijn, C., van Den Akker, H., “On turbulent flows in cold-wall CVD reactors”, J. Cryst. Growth, 212,299-310 (2000). 34 Coltrin, M., Kee, R., Miller, J., “A mathematical model of silicon chemical vapor deposition”, J. Electrochem. Soc., 133, 1206-1210 (1986). 35 Verwer, J., Sommeijer, B., Hundsdorfer, W., “RKC time-stepping for advection-diffusion-reaction problems”, J. Comput. Phys., 201, 61-79 (2004). 36 Pope, S., “Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation”, Combust. Theory Modelling, 1, 41-63 (1997). 37 Yu, M., Lin, J., Chan, T., “Numerical simulation of nanoparticle synthesis in diffusion flame reactor”, Powder Technol., 181, 9-20 (2008). 38 Kee, R., Rupley, F.M., Meeks, E., Miller, J.A., “Chemkin-III: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics”, Technical Report SAND968216, Sandia National Laboratories, Albuquerque, NM (1996). 39 Cai, D., Zheng, L., Wan, Y., Hariharan, A., Chandra, M., “Numerical and experimental study of polysilicon deposition on silicon tubes”, J. Cryst. Growth, 250, 41-49 (2003). 40 Cheng, T., Hsiao, M., “Computation of three-dimensional flow and thermal fields in a model horizontal chemical vapor deposition reactor”, J. Cryst. Growth, 293, 475-484 (2006). 41 del Coso, G., del Canizo, C., Luque, A., “Chemical vapor deposition model of polysilicon in a trichlorosilane and hydrogen system”, J. Electrochem. Soc., 155, D485-D491 (2008). 42 Zhang, P., Wang, W.W., Chen, G.H., Li, J.L., “Study on the chemical vapor deposition of polycrystalline silicon in a trichlorosilane and hydrogen system”, J. Synth. Crystals, 39, 495-499 (2010). 43 Salinger, A., Shadid, J., Hutchinson, S., Hennigan, G., Devine, K., Moffat, H., “Analysis of gallium arsenide deposition in a horizontal CVD reactor using massively parallel computations”, J. Crystal Growth, 203, 516-533 (1999). 44 Park, K., Pak, H., “Characteristics of three-dimensional flow, heat, and mass transfer in a chemical vapor deposition reactor”, Num. Heat Transfer A Appl., 37, 407-423 (2000). 45 De, A.K., Muralidhar, K., Eswaran, V., Wadhawan, V., “Modelling of transport phenomena in a low-pressure CVD reactor”, J. Cryst. Growth, 267, 598-612 (2004). 46 Terai, F., Kobayashi, H., Katsui, S., Tamaoki, N., Nagatomo, T., Homma, T., “High-speed rotating-disk chemical vapor deposition process for in-situ arsenic-doped polycrystalline silicon films”, Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 44, 7883-7888 (2005). 47 Habuka, H., Aoyama, Y., Akiyama, S., Otsuka, T., Qu, W.F., Shimada, M., Okuyama, K., “Chemical process of silicon epitaxial growth in a SiHCl3 -H2 system”, J. Cryst. Growth, 207, 77-86 (1999). 48 Habuka, H., Suzuki, T., Yamamoto, S., Nakamura, A., Takeuchi, T., Aihara, M., “Dominant rate process of silicon surface etching by hydrogen chloride gas”, Thin Solid Films, 489, 104-110 (2005). |