CIESC Journal ›› 2015, Vol. 66 ›› Issue (8): 2863-2871.DOI: 10.11949/j.issn.0438-1157.20150648

Previous Articles     Next Articles

Recent advances in synthetic biology

LIN Zhanglin, ZHANG Yan, WANG Xu, LIU Peng   

  1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received:2015-05-21 Revised:2015-05-28 Online:2015-08-05 Published:2015-08-05
  • Supported by:

    supported by the National Basic Research Program of China (2013CB733900).

合成生物学研究进展

林章凛, 张艳, 王胥, 刘鹏   

  1. 清华大学化学工程系, 北京 100084
  • 通讯作者: 林章凛
  • 基金资助:

    国家重点基础研究发展计划项目(2013CB733900)。

Abstract:

Synthetic biology is the engineering design and construction of standardized parts, devices and modules to modify the natural life systems or the de novo synthesis of new life systems. Synthetic biology has been widely applied to the fields of chemical synthesis (including materials, biofuels and natural compounds), medical industry, agriculture and environmental protection. Biological parts are used to construct synthetic modules such as toggle switch, synthetic oscillator, genetic amplifier, biologic gates and cellular counter. These synthetic modules reprogram life systems to perform specific functions. Modularized metabolic pathways are optimized in the cellular chassis to realize the biological production of bulk and fine chemicals, such as butanol, isobutanol, artemisinin, and taxol. In recent years, researchers have also developed several genome-editing and DNA assembly techniques, making it possible to perform the precise editing and synthesis of genomes. Moreover, genomes of bacteriophage, Mycoplasma genitalium and Saccharomyces cerevisiae have also been successfully synthesized. In the next 50—100 years, synthetic biology will have significant influence on medical industry, chemical (including drugs) synthesis and military affairs. Synthetic biology will have a gradual but disruptive meaning to the world.

Key words: synthetic biology, biochemical engineering, metablism, parts and devices, modules, genetic circuit, chemical synthesis, genome

摘要:

合成生物学是以工程化设计思路,构建标准化的元器件和模块,改造已存在的天然系统或者从头合成全新的人工生命体系,实现在化学品合成(包括材料、能源和天然化合物)、医学、农业、环境等领域的应用。人们利用基本的生物学元件设计和构建了基因开关、振荡器、放大器、逻辑门、计数器等合成器件,实现对生命系统的重新编程并执行特殊功能。模块化处理生物的代谢途径,并在底盘细胞上进行组装和优化,可以实现大宗化学品和精细化学品的合成。目前人们已经在丁醇、异丁醇、青蒿素和紫杉醇等化合物的生物合成上取得了重要进展。近年来还发展了多种基因组编辑和组装技术,可精确地对基因组进行编辑,人们还成功地合成了噬菌体基因组、支原体基因组和酵母基因组。在未来的50~100年内,合成生物学将对人类的医疗、化学品制造(含药品)、军事产生渐进性的、渗透性的但颠覆性的意义。

关键词: 合成生物学, 生化工程, 代谢, 元器件, 模块, 基因线路, 化学品合成, 基因组

CLC Number: