CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2681-2687.DOI: 10.11949/j.issn.0438-1157.20171398
Previous Articles Next Articles
LIN Bingcheng, WANG Jun, HUANG Qunxing, CHI Yong
Received:
2017-10-19
Revised:
2017-11-14
Online:
2018-06-05
Published:
2018-06-05
Supported by:
supported by the National Natural Science Foundation of China (51576172) and the Innovative Research Groups of the National Natural Science Foundation of China (51621005).
林炳丞, 王君, 黄群星, 池涌
通讯作者:
黄群星
基金资助:
国家自然科学基金项目(51576172);国家自然科学基金创新研究群体项目(51621005)。
CLC Number:
LIN Bingcheng, WANG Jun, HUANG Qunxing, CHI Yong. Products obtained from catalytic pyrolysis of oily sludge over ZSM-5 zeolite[J]. CIESC Journal, 2018, 69(6): 2681-2687.
林炳丞, 王君, 黄群星, 池涌. 含油污泥在ZSM-5沸石上催化热解产物特性[J]. 化工学报, 2018, 69(6): 2681-2687.
[1] | YAN P, LU M, YANG Q, et al. Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing pseudomonas[J]. Bioresource Technology, 2012, 116:24-28. |
[2] | 崔鹏, 郭铁. 含油污泥药剂处理方法研究进展[J]. 当代化工, 2013, 42(7):999-1002. CUI P, GUO T. Research progress in chemical treatment methods of oily sludge[J]. Contemporary Chemical Industry, 2013, 42(7):999-1002. |
[3] | HU G, LI J, ZENG G. Recent development in the treatment of oily sludge from petroleum industry:a review[J]. Journal of Hazardous Materials, 2013, 261:470-490. |
[4] | ESSAM A H Z, DANA M A. Fuel recovery from waste oily sludge using solvent extraction[J]. Process Safety and Environmental Protection, 2010, 88(5):318-326. |
[5] | TAN W, YANG X G, TAN X F. Study on demulsification of crude oil emulsions by microwave chemical method[J]. Separation Science and Technology, 2007, 42(6):1367-1377. |
[6] | XU N, WANG W, HAN P, et al. Effects of ultrasound on oily sludge deoiling[J]. Journal of Hazardous Materials, 2009, 171(1/2/3):914-917. |
[7] | 陈继华, 马增益, 马攀. 油泥热解机理研究[J]. 能源工程, 2012, (2):56-61. CHEN J H, MA Z Y, MA P. Mechanism of oil sludge pyrolysis[J]. Energy Engineering, 2012, (2):56-61. |
[8] | 全翠, 李爱民, 高宁博, 等. 采用热解方法回收油泥中原油[J].石油学报(石油加工), 2010, 26(5):742-746. QUAN C, LI A M, GAO N B, et al. Oil recovery from oily-sludge by pyrolysis method[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010,26(5):742-746. |
[9] | 陈超, 李水清, 岳长涛, 等. 含油污泥回转式连续热解——质能平衡及产物分析[J]. 化工学报, 2006, 57(3):650-657. CHEN C, LI S Q, YUE C T, et al. Lab scale pyrolysis of oily sludge in continuous rotating reactor:mass/energy balance and product analysis[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(3):650-657. |
[10] | SHIE J L, CHANG C Y, LIN J P, et al. Use of inexpensive additives in pyrolysis of oil sludge[J]. Energy & Fuels, 2002, 16(1):102-108. |
[11] | SHIE J L, LIN J P, CHANG C Y, et al. Pyrolysis of oil sludge with additives of sodium and potassium compounds[J]. Resources, Conservation and Recycling, 2003, 39(1):51-64. |
[12] | SHIE J L, LIN J P, CHANG C Y, et al. Pyrolysis of oil sludge with additives of catalytic solid wastes[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71(2):695-707. |
[13] | WANG H, JIA H, WANG L, et al. The catalytic effect of modified bentonite on the pyrolysis of oily sludge[J]. Petroleum Science and Technology, 2015, 33(13/14):1388-1394. |
[14] | 刘鲁珍, 李金灵, 屈撑囤. TiO2/MCM-41的制备及对含油污泥热解过程的影响[J]. 环境工程学报, 2016, 10(12):7294-7298. LIU L Z, LI J L, QU C T. Preparation and influence of TiO2/MCM-41 on pyrolysis process of oily sludge[J]. Chinese Journal of Environmental Engineering, 2016, 10(12):7294-7298. |
[15] | CHENG S, LI A M, YOSHIKAWA K. High quality oil recovery from oil sludge employing a pyrolysis process with oil sludge ash catalyst[J]. International Journal of Waste Resources, 2015, 5(2):656-660. |
[16] | PÁNEK P, KOSTURA B, ?EPELÁKOVÁ I, et al. Pyrolysis of oil sludge with calcium-containing additive[J]. Journal of Analytical and Applied Pyrolysis, 2014, 108:274-283. |
[17] | SUN Y, JIN B S, WU W, et al. Effects of temperature and composite alumina on pyrolysis of sewage sludge[J]. Journal of Environmental Sciences, 2015, 30:1-8. |
[18] | RONALD W T, SAI P R K, NARENDRA N B. The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst[J]. Fuel Processing Technology, 2000, 62 (1):17-30. |
[19] | PAVLOVICH O N, BELOUSOVA O A, LYAPKIN A A, et al. Derivation of 2-methylnaphthalene from press residues of pressed-naphthalene production[J]. Coke and Chemistry, 2008, 51(5):184-187. |
[20] | TOSHIAKI Y, GUIDO G, SHOICHI O, et al. Selective production of benzene and naphthalene from poly(butylene terephthalate) and poly (ethylene naphthalene-2, 6-dicarboxylate) by pyrolysis in the presence of calcium hydroxide[J]. Polymer Degradation and Stability, 2006, 91(5):1002-1009. |
[21] | 史晓杰, 邢侃, 樊红超, 等. ZSM-5分子筛的合成与改性研究进展[J]. 无机盐工业, 2016, 48(2):6-8. SHI X J, XING K, FAN H C, et al. Advances in synthesis and modification of ZSM-5 zeolite[J]. Inorganic Chemicals Industry, 2016, 48(2):6-8. |
[22] | 胡尧良, BAKHSHI N N. 在HZSM-5催化剂上重质原油的催化裂解/重整试验[J]. 石油学报(石油加工), 1989, 5(1):25-32. HU Y L, BAKHSHI N N. Catalytic cracking/reforming of heavy crude oil over HZSM-5 catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section), 1989,5(1):25-32. |
[23] | American Society for Testing and Materials. Standard test method for water in petroleum products and bituminous materials by distillation:ASTM D95-13[S]. ASTM International, 2013. |
[24] | HUANG Q X, HAN X, MAO F Y, et al. A model for predicting solid particle behavior in petroleum sludge during centrifugation[J]. Fuel, 2014, 117:95-102. |
[25] | ZHANG Y W, ZHOU Y M, HUANG L, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 270:352-361. |
[26] | VICTOR A, MARK W S, DUSHYANT S. Investigation of the stability of Zn-based HZSM-5 catalysts for methane dehydroaromatization[J]. Applied Catalysis A:General, 2015. 505:365-374. |
[27] | TAMER K, JALE Y, MITHAT Y, et al. Characterisation of products from pyrolysis of waste sludges[J]. Fuel, 2006, 85 (10/11):1498-1508. |
[28] | LI X C, LI S G, YANG Y F, et al. Studies on coke formation and coke species of nickel-based catalysts in CO2 reforming of CH4[J]. Catalysis Letter, 2007, 118(1):59-63. |
[29] | 陈艳艳. ZSM-5分子筛合成、改性及液化气芳构化研究[D]. 淄博:山东理工大学, 2014. CHEN Y Y. The synthesis modification of ZSM-5 zeolite and the research of LPG aromatization[D]. Zibo:Shandong University of Technology, 2014. |
[30] | 杨海军. 含油污泥热裂解技术研究[D]. 青岛:中国石油大学(华东), 2008. YANG H J. Study on the pyrolysis technology of oily sludge[D]. Qingdao:China University of Petroleum (East China), 2008. |
[31] | ANDERSON B G, SCHUMACHER R R, VAN D R, et al. An attempt to predict the optimum zeolite-based catalyst for selective cracking of naphtha-range hydrocarbons to light olefins[J]. Journal of Molecular Catalysis. A:Chemical, 2002, 181(1):291-301. |
[32] | RAMOS R, GARCIA A, BOTAS J A, et al. Enhanced production of aromatic hydrocarbons by rapeseed oil conversion over Ga and Zn modified ZSM-5 catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(50):12723-12732. |
[33] | HUANG Q X, HAN X, MAO F Y, et al. A model for predicting solid particle behavior in petroleum sludge during centrifugation[J]. Fuel, 2014, 117:95-102. |
[34] | TORREN R C, JUNGHO J, YU C L, et al. Catalytic fast pyrolysis of glucose with HZSM-5:the combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis, 2010, 270 (1):110-124. |
[35] | 汪洋, 王银斌, 郭春垒, 等. 焙烧温度对HZSM-5分子筛催化甲醇制芳烃反应性能的影响[J]. 石油学报(石油加工), 2017, 33(4):639-645. WANG Y, WANG Y B, GUO C L, et al. Effect of calcination temperature on the performance of HZSM-5 catalysts in methanol to aromatics[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(4):639-645. |
[36] | BERT M W, MICHAEL P R, JACK H L. Characterization of surface carbon formed during the conversion of methane to benzene over Mo/H-ZSM-5 catalysts[J]. Catalysis Letters, 1998, 52(1):31-36. |
[37] | ZHANG D S, WANG R J, WANG L J, et al. Coking and deactivation of boron modified Al-MCM-41 for vapor-phase Beckmann rearrangement reaction[J]. Journal of Molecular Catalysis A:Chemical, 2013, 366:179-185. |
[1] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[2] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[3] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[4] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[5] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[6] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[7] | Xu WANG, Leyao ZHANG, Haoxuan ZHANG, Jiahui YAN, Yushuai WU, Dong WU, Huiyong CHEN, Xiaoxun MA. Effect of hollow structure on the acetone adsorption property of tungsten-substituted MFI zeolite [J]. CIESC Journal, 2022, 73(3): 1194-1206. |
[8] | Ming HUANG, Liang ZHU, Zixia DING, Yiting MAO, Zhongqing MA. Synergistic interactions of biomass three-component and low-density polyethylene during co-catalytic fast pyrolysis for the production of light aromatics [J]. CIESC Journal, 2022, 73(2): 699-711. |
[9] | Pengzhi BEI, Wenying LI. An energy decomposition analysis-based extractant selection [J]. CIESC Journal, 2022, 73(2): 739-746. |
[10] | Chang SU, Xiaobo FENG, Liyun ZHANG, Feng CHEN, Xiaoyan ZHAO, Jingpei CAO. Effect of tetraethylammonium hydroxide treatment on the structure of HMOR zeolite and its catalytic performance in the carbonylation of dimethyl ether [J]. CIESC Journal, 2022, 73(2): 712-721. |
[11] | Zhaoxi ZHANG,Mei ZHONG,Jian LI, YALKUN·Tursun. Effect of modified montmorillonite on the pyrolysis behavior of Xinjiang Hefeng coal [J]. CIESC Journal, 2022, 73(1): 402-410. |
[12] | Chao ZHANG, Jian CHEN, Wenhua YIN, Yuanhui SHEN, Zhaoyang NIU, Xiuxin YU, Donghui ZHANG, Zhongli TANG. Transient analysis of pressure swing adsorption hydrogen purification process [J]. CIESC Journal, 2022, 73(1): 308-321. |
[13] | Jiahao LIANG, Guoqiang ZHANG, Yuan GAO, Jiao YIN, Huayan ZHENG, Zhong LI. Effect of mesoporous construction on catalytic performance of CuY methanol oxidative carbonylation [J]. CIESC Journal, 2021, 72(9): 4685-4697. |
[14] | Xiaobo FENG, Tianlong LIU, Xiaoyan ZHAO, Jingpei CAO. Advance in ethanol synthesis from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate [J]. CIESC Journal, 2021, 72(8): 3958-3967. |
[15] | Wanyue DING, Xiaohua MA. Effects of synthesis times and Si-Al ratio of SAPO-34 zeolite membrane on ethanol dehydration performance [J]. CIESC Journal, 2021, 72(8): 4410-4417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||