CIESC Journal ›› 2022, Vol. 73 ›› Issue (8): 3461-3471.DOI: 10.11949/0438-1157.20220624
• Reviews and monographs • Previous Articles Next Articles
Haoyu XIAO(), Haiping YANG(), Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN
Received:
2022-05-05
Revised:
2022-07-21
Online:
2022-09-06
Published:
2022-08-05
Contact:
Haiping YANG
肖皓宇(), 杨海平(), 张雄, 陈应泉, 王贤华, 陈汉平
通讯作者:
杨海平
作者简介:
肖皓宇(1995—),男,博士研究生,hyxiao822@163.com
基金资助:
CLC Number:
Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products[J]. CIESC Journal, 2022, 73(8): 3461-3471.
肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471.
序号 | 原料 | 温度和反应时间 | 催化剂 | 反应器 | 目标产物 | 产物分布/%(质量) | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
气 | 液 | 固 | |||||||
1 | HDPE | 850℃,0.6~1.7 s | 无 | 流化床 | 低碳烯烃 | 83.8~88.6 | 11.4~16.2 | [ | |
2 | PE+PP+PVC+PET | 700℃,15 s | 无 | 流化床 | 低碳烯烃 | 68.8 | 18.4 | [ | |
3 | PP | 500℃ | HZSM-5 | 锥形喷床反应器 | 60%(质量)低碳烯烃 | 71.6 | 28.4 | [ | |
4 | PE | 450~515℃,10~12 s | FCC | 流化床 | 39%~40.9%(质量)低碳烯烃,8.8%(质量)芳烃 | 48.3~51.8 | 37.1~38.3 | [ | |
5 | LDPE | 380℃,360 min | MCM-41 | 搅动反应器 | 低碳烯烃 | 37.3 | 23.2 | [ | |
6 | PS | 780℃ | 无 | 螺旋热解+流化床 | 26.3%(质量) BTEX+26%(质量)苯乙烯 | 13.8 | 86.0 | [ | |
7 | PE | 280℃,24 h | Pt/γ-Al2O3 | 搅动式反应釜 | 50%(mol)芳烃 | 80 | [ | ||
8 | PP | 400℃ | ZSM-5 | 等离子体热解反应器 | 4.19 mmol/g H2+85% BTX | 47 | 53 | [ | |
9 | PE | 430℃ | ZSM-5 | 固定床 | 低碳烯烃+芳烃 | 44.3 | 49.8 | [ | |
10 | PE+PP+PS+PET+PVC | 500℃ | 赤泥 | 半连续式反应器 | 35.4%(质量) C1~C4 +42.3% (area)苯乙烯 | 41.3 | 57 | 1.7 | [ |
11 | PP | 300℃+720℃ | 无 | 活化器+流化床 | 52%(质量)低碳烯烃+ 芳烃92%(质量) | 71.3 | 28 | 0.8 | [ |
12 | HDPE | 600℃ | Y型分子筛 | 两段式固定床 | 80%~95% (area)芳烃 | 36 | 45 | [ | |
13 | PP+PE+PS | 500℃ | Zn-生物炭 | 管式炉 | 42.4%芳烃 | 42.2 | 54.7 | 3.1 | [ |
14 | PP | 800℃ | Fe-Al2O3 | 两段式固定床 | 82 mg H2+337 mg CNTs | 50 | 42 | [ | |
15 | PP+PE+PS | 300℃ | FeAlO x | 微波反应器 | 55.6 mmol/gplastic H2+ 620 mg/gplastic CNTs | 27 | 73 | [ | |
16 | PS | 800℃ | Fe-Al2O3 | 两段式固定床 | 富氢气+芳烃+CNTs | 17.2 | 26.1 | 48.7 | [ |
17 | 真实废塑料 | 800℃ | FeNi-Al2O3 | 两段式固定床 | 富氢气+CNTs | 39.4 | 8.8 | 50.9 | [ |
Table 1 Product distribution of catalytic pyrolysis of plastics
序号 | 原料 | 温度和反应时间 | 催化剂 | 反应器 | 目标产物 | 产物分布/%(质量) | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
气 | 液 | 固 | |||||||
1 | HDPE | 850℃,0.6~1.7 s | 无 | 流化床 | 低碳烯烃 | 83.8~88.6 | 11.4~16.2 | [ | |
2 | PE+PP+PVC+PET | 700℃,15 s | 无 | 流化床 | 低碳烯烃 | 68.8 | 18.4 | [ | |
3 | PP | 500℃ | HZSM-5 | 锥形喷床反应器 | 60%(质量)低碳烯烃 | 71.6 | 28.4 | [ | |
4 | PE | 450~515℃,10~12 s | FCC | 流化床 | 39%~40.9%(质量)低碳烯烃,8.8%(质量)芳烃 | 48.3~51.8 | 37.1~38.3 | [ | |
5 | LDPE | 380℃,360 min | MCM-41 | 搅动反应器 | 低碳烯烃 | 37.3 | 23.2 | [ | |
6 | PS | 780℃ | 无 | 螺旋热解+流化床 | 26.3%(质量) BTEX+26%(质量)苯乙烯 | 13.8 | 86.0 | [ | |
7 | PE | 280℃,24 h | Pt/γ-Al2O3 | 搅动式反应釜 | 50%(mol)芳烃 | 80 | [ | ||
8 | PP | 400℃ | ZSM-5 | 等离子体热解反应器 | 4.19 mmol/g H2+85% BTX | 47 | 53 | [ | |
9 | PE | 430℃ | ZSM-5 | 固定床 | 低碳烯烃+芳烃 | 44.3 | 49.8 | [ | |
10 | PE+PP+PS+PET+PVC | 500℃ | 赤泥 | 半连续式反应器 | 35.4%(质量) C1~C4 +42.3% (area)苯乙烯 | 41.3 | 57 | 1.7 | [ |
11 | PP | 300℃+720℃ | 无 | 活化器+流化床 | 52%(质量)低碳烯烃+ 芳烃92%(质量) | 71.3 | 28 | 0.8 | [ |
12 | HDPE | 600℃ | Y型分子筛 | 两段式固定床 | 80%~95% (area)芳烃 | 36 | 45 | [ | |
13 | PP+PE+PS | 500℃ | Zn-生物炭 | 管式炉 | 42.4%芳烃 | 42.2 | 54.7 | 3.1 | [ |
14 | PP | 800℃ | Fe-Al2O3 | 两段式固定床 | 82 mg H2+337 mg CNTs | 50 | 42 | [ | |
15 | PP+PE+PS | 300℃ | FeAlO x | 微波反应器 | 55.6 mmol/gplastic H2+ 620 mg/gplastic CNTs | 27 | 73 | [ | |
16 | PS | 800℃ | Fe-Al2O3 | 两段式固定床 | 富氢气+芳烃+CNTs | 17.2 | 26.1 | 48.7 | [ |
17 | 真实废塑料 | 800℃ | FeNi-Al2O3 | 两段式固定床 | 富氢气+CNTs | 39.4 | 8.8 | 50.9 | [ |
产物 | 市场价格/(CNY/kg) | 催化剂原料价格①/(CNY/t) | 产率/%(质量) | 文献 |
---|---|---|---|---|
碳纳米管 | 865.1 | Fe(NO3)3·9H2O: 3300 Al2O3: 2400 | 34~62 | [ |
氢气 | 27.6 | 8~11 | [ | |
苯 | 4.9~6.4 | ZSM-5: 45000~75000 FCC: 22000 | 30~53 (BTX) | [ |
甲苯 | 4.1~5.8 | |||
二甲苯 | 4.2~6 | |||
乙烯 丙烯 | 4.8~7.6 4.8~8.9 | ZSM-5: 45000~75000 Y型分子筛:10000~25000 | 63~75 (低碳烯烃) | [ |
Table 2 Market price and yield of several plastics pyrolysis products
产物 | 市场价格/(CNY/kg) | 催化剂原料价格①/(CNY/t) | 产率/%(质量) | 文献 |
---|---|---|---|---|
碳纳米管 | 865.1 | Fe(NO3)3·9H2O: 3300 Al2O3: 2400 | 34~62 | [ |
氢气 | 27.6 | 8~11 | [ | |
苯 | 4.9~6.4 | ZSM-5: 45000~75000 FCC: 22000 | 30~53 (BTX) | [ |
甲苯 | 4.1~5.8 | |||
二甲苯 | 4.2~6 | |||
乙烯 丙烯 | 4.8~7.6 4.8~8.9 | ZSM-5: 45000~75000 Y型分子筛:10000~25000 | 63~75 (低碳烯烃) | [ |
1 | Lopez G, Artetxe M, Amutio M, et al. Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 346-368. |
2 | Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
3 | Prata J C, Silva A L P, Walker T R, et al. COVID-19 pandemic repercussions on the use and management of plastics[J]. Environmental Science & Technology, 2020, 54(13): 7760-7765. |
4 | Adyel T M. Accumulation of plastic waste during COVID-19[J]. Science, 2020, 369(6509): 1314-1315. |
5 | 国家发展改革委. 进一步加强塑料污染治理的意见[EB/OL]. [2020-01-21]. . |
National Development and Reform Commission. Interpretation of opinion on further strengthening the control of plasitc pollution [EB/OL]. [2020-01-21]. . | |
6 | Weckhuysen B M. Creating value from plastic waste[J]. Science, 2020, 370(6515): 400-401. |
7 | Coates G W, Getzler Y D Y L. Chemical recycling to monomer for an ideal, circular polymer economy[J]. Nature Reviews Materials, 2020, 5(7): 501-516. |
8 | Armenise S, SyieLuing W, Ramírez-Velásquez J M, et al. Plastic waste recycling via pyrolysis: a bibliometric survey and literature review[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105265. |
9 | Chen H, Wan K, Zhang Y Y, et al. Waste to wealth: chemical recycling and chemical upcycling of waste plastics for a great future[J]. ChemSusChem, 2021, 14(19): 4123-4136. |
10 | Berrueco C, Mastral F J, Esperanza E, et al. Production of waxes and tars from the continuous pyrolysis of high density polyethylene. Influence of operation variables[J]. Energy & Fuels, 2002, 16(5): 1148-1153. |
11 | Williams E A, Williams P T. Analysis of products derived from the fast pyrolysis of plastic waste[J]. Journal of Analytical and Applied Pyrolysis, 1997, 40/41: 347-363. |
12 | Elordi G, Olazar M, Lopez G, et al. Continuous polyolefin cracking on an HZSM-5 zeolite catalyst in a conical spouted bed reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6061-6070. |
13 | Mertinkat J, Kirsten A, Predel M, et al. Cracking catalysts used as fluidized bed material in the Hamburg pyrolysis process[J]. Journal of Analytical and Applied Pyrolysis, 1999, 49(1/2): 87-95. |
14 | Van Grieken R, Serrano D P, Aguado J, et al. Thermal and catalytic cracking of polyethylene under mild conditions[J]. Journal of Analytical and Applied Pyrolysis, 2001, 58/59: 127-142. |
15 | Park K B, Jeong Y S, Guzelciftci B, et al. Two-stage pyrolysis of polystyrene: pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes[J]. Applied Energy, 2020, 259: 114240. |
16 | Zhang F, Zeng M H, Yappert R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370(6515): 437-441. |
17 | Xiao H Y, Harding J, Lei S S, et al. Hydrogen and aromatics recovery through plasma-catalytic pyrolysis of waste polypropylene[J]. Journal of Cleaner Production, 2022, 350: 131467. |
18 | Sakata Y, Uddin M A, Muto A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1/2): 135-155. |
19 | López A, de Marco I, Caballero B M, et al. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and red mud[J]. Applied Catalysis B: Environmental, 2011, 104(3/4): 211-219. |
20 | Park K B, Jeong Y S, Kim J S. Activator-assisted pyrolysis of polypropylene[J]. Applied Energy, 2019, 253: 113558. |
21 | Akubo K, Nahil M A, Williams P T. Aromatic fuel oils produced from the pyrolysis-catalysis of polyethylene plastic with metal-impregnated zeolite catalysts[J]. Journal of the Energy Institute, 2019, 92(1): 195-202. |
22 | Sun K, Huang Q X, Chi Y, et al. Effect of ZnCl2-activated biochar on catalytic pyrolysis of mixed waste plastics for producing aromatic-enriched oil[J]. Waste Management, 2018, 81: 128-137. |
23 | Cai N, Xia S W, Li X Q, et al. Influence of the ratio of Fe/Al2O3 on waste polypropylene pyrolysis for high value-added products[J]. Journal of Cleaner Production, 2021, 315: 128240. |
24 | Jie X Y, Li W S, Slocombe D, et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons[J]. Nature Catalysis, 2020, 3(11): 902-912. |
25 | Cai N, Li X Q, Xia S W, et al. Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: high-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms[J]. Energy Conversion and Management, 2021, 229: 113794. |
26 | Yao D D, Wu C F, Yang H P, et al. Co-production of hydrogen and carbon nanotubes from catalytic pyrolysis of waste plastics on Ni-Fe bimetallic catalyst[J]. Energy Conversion and Management, 2017, 148: 692-700. |
27 | Kaminsky W, Schlesselmann B, Simon C. Olefins from polyolefins and mixed plastics by pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 1995, 32: 19-27. |
28 | Vinu R, Ojha D K, Nair V. Polymer pyrolysis for resource recovery[M]// Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier, 2016. |
29 | López A, de Marco I, Caballero B M, et al. Influence of time and temperature on pyrolysis of plastic wastes in a semi-batch reactor[J]. Chemical Engineering Journal, 2011, 173(1): 62-71. |
30 | Hernández M D R, García Á N, Marcilla A. Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2005, 73(2): 314-322. |
31 | Kannan P, Al Shoaibi A, Srinivasakannan C. Temperature effects on the yield of gaseous olefins from waste polyethylene via flash pyrolysis[J]. Energy & Fuels, 2014, 28(5): 3363-3366. |
32 | Hernández M D R, Gómez A, García Á N, et al. Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE[J]. Applied Catalysis A: General, 2007, 317(2): 183-194. |
33 | Lovett S, Berruti F, Behie L A. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products[J]. Industrial & Engineering Chemistry Research, 1997, 36(11): 4436-4444. |
34 | Milne B J, Behie L A, Berruti F. Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1): 157-166. |
35 | Westerhout R W J, Waanders J, Kuipers J A M, et al. Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high-temperature pyrolysis[J]. Industrial & Engineering Chemistry Research, 1998, 37(6): 2293-2300. |
36 | Sodero S F, Berruti F, Behie L A. Ultrapyrolytic cracking of polyethylene—a high yield recycling method[J]. Chemical Engineering Science, 1996, 51(11): 2805-2810. |
37 | Orozco S, Artetxe M, Lopez G, et al. Conversion of HDPE into value products by fast pyrolysis using FCC spent catalysts in a fountain confined conical spouted bed reactor[J]. ChemSusChem, 2021, 14(19): 4291-4300. |
38 | Kulas D G, Zolghadr A, Shonnard D. Micropyrolysis of polyethylene and polypropylene prior to bioconversion: the effect of reactor temperature and vapor residence time on product distribution[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14443-14450. |
39 | Kaminsky W, Predel M, Sadiki A. Feedstock recycling of polymers by pyrolysis in a fluidised bed[J]. Polymer Degradation and Stability, 2004, 85(3): 1045-1050. |
40 | Artetxe M, Lopez G, Amutio M, et al. Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor[J]. Waste Management, 2015, 45: 126-133. |
41 | Mastral J F, Berrueco C, Gea M, et al. Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite[J]. Polymer Degradation and Stability, 2006, 91(12): 3330-3338. |
42 | Artetxe M, Lopez G, Amutio M, et al. Light olefins from HDPE cracking in a two-step thermal and catalytic process[J]. Chemical Engineering Journal, 2012, 207: 27-34. |
43 | Elordi G, Olazar M, Lopez G, et al. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1): 345-351. |
44 | Artetxe M, Lopez G, Amutio M, et al. Cracking of high density polyethylene pyrolysis waxes on HZSM-5 catalysts of different acidity[J]. Industrial & Engineering Chemistry Research, 2013, 52(31): 10637-10645. |
45 | Elordi G, Lopez G, Aguado R, et al. Catalytic pyrolysis of high density polyethylene on a HZSM-5 zeolite catalyst in a conical spouted bed reactor[J]. International Journal of Chemical Reactor Engineering, 2007, 5(1): 10. |
46 | Elordi G, Olazar M, Aguado R, et al. Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 450-455. |
47 | Anuar Sharuddin S D, Abnisa F, Wan Daud W M A, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326. |
48 | Elordi G, Olazar M, Artetxe M, et al. Effect of the acidity of the HZSM-5 zeolite catalyst on the cracking of high density polyethylene in a conical spouted bed reactor[J]. Applied Catalysis A: General, 2012, 415/416: 89-95. |
49 | Salmasi S S Z, Abbas-Abadi M S, Haghighi M N, et al. The effect of different zeolite based catalysts on the pyrolysis of poly butadiene rubber[J]. Fuel, 2015, 160: 544-548. |
50 | Aguado J, Serrano D P, Sotelo J L, et al. Influence of the operating variables on the catalytic conversion of a polyolefin mixture over HMCM-41 and nanosized HZSM-5[J]. Industrial & Engineering Chemistry Research, 2001, 40(24): 5696-5704. |
51 | Ali S, Garforth A A, Harris D H, et al. Polymer waste recycling over “used” catalysts[J]. Catalysis Today, 2002, 75(1): 247-255. |
52 | Williams P T, Williams E A. Fluidised bed pyrolysis of low density polyethylene to produce petrochemical feedstock[J]. Journal of Analytical and Applied Pyrolysis, 1999, 51(1/2): 107-126. |
53 | Mastellone M L, Perugini F, Ponte M, et al. Fluidized bed pyrolysis of a recycled polyethylene[J]. Polymer Degradation and Stability, 2002, 76(3): 479-487. |
54 | Jin X, Zhu Y, Xu H, et al. Research progress on degradation and recycling of waste plastics [J]. Engineering Plastics Application, 2021, 49(9): 139-144. |
55 | Seo Y H, Lee K H, Shin D H. Investigation of catalytic degradation of high-density polyethylene by hydrocarbon group type analysis[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 383-398. |
56 | Bagri R, Williams P T. Catalytic pyrolysis of polyethylene[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 29-41. |
57 | Miandad R, Barakat M A, Aburiazaiza A S, et al. Catalytic pyrolysis of plastic waste: a review[J]. Process Safety and Environmental Protection, 2016, 102: 822-838. |
58 | Aguado J, Serrano D P, Miguel G S, et al. Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 415-423. |
59 | Lin Y H, Yang M H. Catalytic pyrolysis of polyolefin waste into valuable hydrocarbons over reused catalyst from refinery FCC units[J]. Applied Catalysis A: General, 2007, 328(2): 132-139. |
60 | Cardona S C, Corma A. Tertiary recycling of polypropylene by catalytic cracking in a semibatch stirred reactor: use of spent equilibrium FCC commercial catalyst[J]. Applied Catalysis B: Environmental, 2000, 25(2): 151-162. |
61 | Jae J, Tompsett G A, Foster A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268. |
62 | Vasile C, Pakdel H, Mihai B, et al. Thermal and catalytic decomposition of mixed plastics[J]. Journal of Analytical and Applied Pyrolysis, 2001, 57(2): 287-303. |
63 | 孙艺蕾, 马跃, 李术元, 等. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2021, 40(5): 2784-2801. |
Sun Y L, Ma Y, Li S Y, et al. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2784-2801. | |
64 | Carlson T R, Tompsett G A, Conner W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis, 2009, 52(3): 241-252. |
65 | Abbas-Abadi M S, Haghighi M N, Yeganeh H, et al. Evaluation of pyrolysis process parameters on polypropylene degradation products[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 272-277. |
66 | Vollmer I, Jenks M J F, Mayorga González R, et al. Plastic waste conversion over a refinery waste catalyst[J]. Angewandte Chemie International Edition, 2021, 60(29): 16101-16108. |
67 | 唐兰, 黄海涛, 郝海青, 等. 固体废弃物等离子体热解/气化系统研究进展[J]. 科技导报, 2015, 33(5): 109-114. |
Tang L, Huang H T, Hao H Q, et al. Plasma pyrolysis/gasification systems for waste disposal[J]. Science & Technology Review, 2015, 33(5): 109-114. | |
68 | Diaz-Silvarrey L S, Zhang K, Phan A N. Monomer recovery through advanced pyrolysis of waste high density polyethylene (HDPE)[J]. Green Chemistry, 2018, 20(8): 1813-1823. |
69 | Song J X, Sima J Y, Pan Y H, et al. Dielectric barrier discharge plasma synergistic catalytic pyrolysis of waste polyethylene into aromatics-enriched oil[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(34): 11448-11457. |
70 | Chernozatonskii L A, Kukovitskii E F, Musatov A L, et al. Carbon crooked nanotube layers of polyethylene: synthesis, structure and electron emission[J]. Carbon, 1998, 36(5/6): 713-715. |
71 | Sherman L M. 前景广阔的碳纳米管 [J]. 现代塑料, 2010(5):52-57. |
Sherman L M. Promising carbon nanotubes [J]. Plastics Technology, 2010(5):52-57. | |
72 | Li Y, Chen D W, Liu M, et al. Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China[J]. International Journal of Hydrogen Energy, 2017, 42(4): 1899-1911. |
73 | Jung S H, Cho M H, Kang B S, et al. Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor[J]. Fuel Processing Technology, 2010, 91(3): 277-284. |
74 | Straathof A J J, Bampouli A. Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(5): 798-810. |
75 | Zhang Y S, Zhu H L, Yao D D, et al. Thermo-chemical conversion of carbonaceous wastes for CNT and hydrogen production: a review[J]. Sustainable Energy & Fuels, 2021, 5(17): 4173-4208. |
76 | Williams P T. Hydrogen and carbon nanotubes from pyrolysis-catalysis of waste plastics: a review[J]. Waste and Biomass Valorization, 2021, 12(1): 1-28. |
77 | Wang H Y, Moore J J. Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition[J]. Carbon, 2012, 50(3): 1235-1242. |
78 | Zhang Q, Zhao M Q, Tang D M, et al. Carbon-nanotube-array double helices[J]. Angewandte Chemie International Edition, 2010, 49(21): 3642-3645. |
79 | Yao Y G, Dai X C, Feng C Q, et al. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process[J]. Advanced Materials, 2009, 21(41): 4158-4162. |
80 | Yao D D, Yang H P, Chen H P, et al. Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics[J]. Applied Catalysis B: Environmental, 2018, 239: 565-577. |
81 | Yao D D, Zhang Y S, Williams P T, et al. Co-production of hydrogen and carbon nanotubes from real-world waste plastics: influence of catalyst composition and operational parameters[J]. Applied Catalysis B: Environmental, 2018, 221: 584-597. |
82 | Acomb J C, Wu C F, Williams P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks[J]. Applied Catalysis B: Environmental, 2016, 180: 497-510. |
83 | Nahil M A, Wu C F, Williams P T. Influence of metal addition to Ni-based catalysts for the co-production of carbon nanotubes and hydrogen from the thermal processing of waste polypropylene[J]. Fuel Processing Technology, 2015, 130: 46-53. |
84 | 冯时宇, 李洋, 李凯, 等. 塑料废弃物热催化制备碳纳米管的研究进展[J]. 环境工程, 2021, 39(4): 107-114. |
Feng S Y, Li Y, Li K, et al. Progress in preparation of carbon nanotubes by thermal catalysis of waste plastics[J]. Environmental Engineering, 2021, 39(4): 107-114. | |
85 | Zhao M Q, Zhang Q, Zhang W, et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides[J]. Journal of the American Chemical Society, 2010, 132(42): 14739-14741. |
86 | Yao D D, Yang H P, Hu Q, et al. Carbon nanotubes from post-consumer waste plastics: investigations into catalyst metal and support material characteristics[J]. Applied Catalysis B: Environmental, 2021, 280: 119413. |
87 | Jia J B, Veksha A, Lim T T, et al. In situ grown metallic nickel from X-Ni (X=La, Mg, Sr) oxides for converting plastics into carbon nanotubes: influence of metal-support interaction[J]. Journal of Cleaner Production, 2020, 258: 120633. |
88 | Yu Z X, Chen D, Tøtdal B, et al. Effect of catalyst preparation on the carbon nanotube growth rate[J]. Catalysis Today, 2005, 100(3/4): 261-267. |
89 | Yao D D, Wang C H. Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts[J]. Applied Energy, 2020, 265: 114819. |
90 | Zhang Q, Zhao M Q, Huang J Q, et al. Selective synthesis of single/double/multi-walled carbon nanotubes on MgO-supported Fe catalyst[J]. Chinese Journal of Catalysis, 2008, 29(11): 1138-1144. |
91 | Ago H, Ishigami N, Yoshihara N, et al. Visualization of horizontally-aligned single-walled carbon nanotube growth with 13C/12C isotopes[J]. The Journal of Physical Chemistry C, 2008, 112(6): 1735-1738. |
92 | Cheung C L, Kurtz A, Park H, et al. Diameter-controlled synthesis of carbon nanotubes[J]. The Journal of Physical Chemistry B, 2002, 106(10): 2429-2433. |
93 | Yao D D, Li H, Dai Y J, et al. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste[J]. Chemical Engineering Journal, 2021, 408: 127268. |
94 | Xiong G Y, Suda Y, Wang D Z, et al. Effect of temperature, pressure, and gas ratio of methane to hydrogen on the synthesis of double-walled carbon nanotubes by chemical vapour deposition[J]. Nanotechnology, 2005, 16(4): 532-535. |
95 | Acomb J C, Wu C F, Williams P T. Effect of growth temperature and feedstock: catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 231-238. |
96 | 姚丁丁. 废塑料催化热解制备富氢气体和碳纳米管的实验研究[D]. 武汉: 华中科技大学, 2018. |
Yao D D. Hydrogen rich syngas and carbon nanotubes production from pyrolysis-catalysis of waste plastics[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
97 | Shah K A, Tali B A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates[J]. Materials Science in Semiconductor Processing, 2016, 41: 67-82. |
98 | Li Q W, Yan H, Zhang J, et al. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition[J]. Carbon, 2004, 42(4): 829-835. |
99 | Liu J, Jiang Z W, Yu H O, et al. Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process[J]. Polymer Degradation and Stability, 2011, 96(10): 1711-1719. |
100 | Yang R X, Wu S L, Chuang K H, et al. Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed[J]. Renewable Energy, 2020, 159: 10-22. |
101 | Yen Y W, Huang M D, Lin F J. Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers[J]. Diamond and Related Materials, 2008, 17(4/5): 567-570. |
102 | Shirazi Y, Tofighy M A, Mohammadi T, et al. Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: purification and functionalization[J]. Applied Surface Science, 2011, 257(16): 7359-7367. |
103 | Zhang Y S, Williams P T. Carbon nanotubes and hydrogen production from the pyrolysis catalysis or catalytic-steam reforming of waste tyres[J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 490-501. |
104 | Wen Q, Qian W Z, Wei F, et al. CO2-assisted SWNT growth on porous catalysts[J]. Chemistry of Materials, 2007, 19(6): 1226-1230. |
105 | Wu C F, Nahil M A, Miskolczi N, et al. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes[J]. Environmental Science & Technology, 2014, 48(1): 819-826. |
106 | Luo H, Yao D D, Zeng K, et al. Solar pyrolysis of waste plastics with photothermal catalysts for high-value products[J]. Fuel Processing Technology, 2022, 230: 107205. |
107 | You S M, Sonne C, Ok Y S. COVID-19: resource recovery from plastic waste against plastic pollution[J]. Cogent Environmental Science, 2020, 6(1): 1801220. |
108 | Wang J, Jiang J C, Wang X B, et al. Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis[J]. Journal of Hazardous Materials, 2020, 386: 121970. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[7] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[8] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[11] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[12] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[15] | Zichao WU, Zhilei WANG, Rongye LI, Kexin LI, Min HUA, Xuhai PAN, Sanming WANG, Juncheng JIANG. Study on the effect of ignition mode on overpressure of underexpanded hydrogen jet explosion [J]. CIESC Journal, 2023, 74(3): 1409-1418. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 302
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 946
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||