CIESC Journal ›› 2019, Vol. 70 ›› Issue (3): 840-849.DOI: 10.11949/j.issn.0438-1157.20180926
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Shunhao WANG1(),Wenli ZHU2,Zhenggen HU2,Rui ZHOU1,Liu YU1,Bin WANG1,Xiaobin ZHANG1()
Received:
2018-08-14
Revised:
2018-10-19
Online:
2019-03-05
Published:
2019-03-05
Contact:
Xiaobin ZHANG
王舜浩1(),朱文俐2,胡正根2,周芮1,余柳1,王彬1,张小斌1()
通讯作者:
张小斌
作者简介:
<named-content content-type="corresp-name">王舜浩</named-content>(1994—),男,博士研究生,<email>wangshzju@126.com</email>|张小斌(1976—),男,博士,教授,<email>zhangxbin@zju.edu.cn</email>
CLC Number:
Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank[J]. CIESC Journal, 2019, 70(3): 840-849.
王舜浩, 朱文俐, 胡正根, 周芮, 余柳, 王彬, 张小斌. 液氢缩比贮箱蒸发特性数值模拟及实验验证[J]. 化工学报, 2019, 70(3): 840-849.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180926
1 | ZhangX B, YaoL, QiuL M, et al. Experimental study on cryogenic moisture uptake in polyurethane foam insulation material[J]. Cryogenics, 2012, 52(12): 810-815. |
2 | ZhangX B, ChenJ Y, GanZ H, et al. Experimental study of moisture uptake of polyurethane foam subjected to a heat sink below 30 K[J]. Cryogenics, 2014, 59(1): 1-6. |
3 | 胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术发展[J]. 导弹与航天运载技术, 2009, 304(6): 28-34. |
HuW F, ShenL, YangJ M, et al. Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J]. Missles and Space Vehicles, 2009, 304(6): 28-34. | |
4 | MeseroleJ, JonesO, BrennanS, et al. Mixing-induced ullage condensation and fluid destratification[C]// Microgravity Fluid Management Symposium. 1987: 732-737. |
5 | LinC, HasanM, NylandT. Mixing and transient interface condensation of a liquid hydrogen tank[C]// AIAA. 2013. |
6 | KassemiM, KartuzovaO. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank[J]. Cryogenics, 2016, 74(15): 138-153. |
7 | FlachbartR H, HastingsL J, HedayatA, et al. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2007, 48(5): 217-222. |
8 | KassemiM, KartuzovaO. CFD modeling of the multipurpose hydrogen test bed (MHTB) self-pressurization and spray bar mixing experiments in normal gravity: effect of the accommodation coefficient on the tank pressure[C]// AIAA. 2015. |
9 | KartuzovaO, KassemiM. Self-Pressurization and spray cooling simulations of the multipurpose hydrogen test bed (MHTB) ground-based experiment[C]// AIAA. 2014. |
10 | PanzarellaC H, KassemiM. Self-pressurization of large spherical cryogenic tanks in space[J]. Journal of Spacecraft & Rockets, 2012, 42(42): 299-308. |
11 | KassemiM, KartuzovaO, HyltonS. Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels[J]. Cryogenics, 2018, 89: 1-15. |
12 | BarsiS, KassemiM. Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity[J]. Cryogenics, 2008, 48(3): 122-129. |
13 | PanzarellaC H, KassemiM. On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J]. Journal of Fluid Mechanics, 2003, 484(484):41-68. |
14 | BarsiS, KassemiM. A numerical study of tank pressure control in reduced gravity[C]// AIAA. 2013. |
15 | FuJ, SundenB, ChenX. Influence of wall ribs on the thermal stratification and self-pressurization in a cryogenic liquid tank[J]. Applied Thermal Engineering, 2014, 73(2): 1421-1431. |
16 | ZhanL, LiY, JinY, et al. Thermodynamic performance of pre-pressurization in a cryogenic tank[J]. Applied Thermal Engineering, 2017, 112: 801-810. |
17 | WangL, LiY, ZhaoZ, et al. Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating[J]. International Journal of Heat & Mass Transfer, 2013, 62(1): 263-271. |
18 | 刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016, 209(1): 25-31. |
LiuZ, SunP J, LiP, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogeics, 2016, 209(1): 25-31. | |
19 | 程向华, 厉彦忠, 陈二锋, 等. 回流口位置对液体火箭液氧贮箱热分层的影响[J]. 航空动力学报, 2009, 24(1): 224-229. |
ChengX H, LiY Z, ChenE F, et al. Effect of the return flow locations on the thermal stratification in liquid oxygen tank of rocket[J]. Journal of Aerospace Power, 2009, 24(1): 224-229. | |
20 | 王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程温度场数值研究[J]. 航空动力学报, 2011, 26(8): 1893-1899. |
WangL, LiY Z, LiC, et al. Numerical study on temperature distribution of tank pressurization process of liquid rocket during outflow[J]. Journal of Aerospace Power, 2011, 26(8): 1893-1899. | |
21 | LeiW, LiY, KangZ, et al. Comparison of three computational models for predicting pressurization characteristics of cryogenic tank during discharge[J]. Cryogenics, 2015, 65: 16-25. |
22 | ChenL, LiangG Z. Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J]. Microgravity Science & Technology, 2013, 25(4):203-211. |
23 | 陈亮, 梁国柱, 魏一, 等. 低温推进剂贮箱压力变化的CFD仿真[J]. 航空动力学报, 2015, 30(6): 1470-1477. |
ChenL, LiangG Z, WeiY, et al. CFD simulation of cryogenic propellant tank pressure variation[J]. Journal of Aerospace Power, 2015, 30(6): 1470-1477. | |
24 | 李佳超, 梁国柱. 地面及微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4):513-519. |
LiJ C, LiangG Z. Numerical simulation of phase change and heat transfer in cryogenic tank under the ground and microgravity condition[J]. Chin. J. Space Sci., 2016, 36(4): 513-519. | |
25 | HoS H, RahmanM M. Forced convective mixing in a zero boil-off cryogenic storage tank[J]. International Journal of Hydrogen Energy, 2012, 37(13): 10196-10209. |
26 | WangL, LiY, LiC, et al. CFD investigation of thermal and pressurization performance in LH2 tank during discharge[J]. Cryogenics, 2013, 57(5): 63-73. |
27 | MajumdarA, ValenzuelaJ, LeclairA, et al. Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank[J]. Cryogenics, 2016, 74: 113-122. |
28 | WangB, HuangY, ChenZ, et al. Performance of thermodynamic vent system for cryogenic-propellant storage using different control strategies[J]. Applied Thermal Engineering, 2017, 126: 100-107. |
29 | 马原, 孙培杰, 李鹏, 等. 液氢贮箱微重力喷射降压特性数值模拟研究[J]. 真空与低温, 2018, 209(1): 25-31. |
MaY, SunP J, LiP, et al. Numerical investigation on performance of spraying pressure control technique for liquid hydrogen tank at microgravity[J]. Vacuum & Cryogenics, 2018, 209(1): 25-31. | |
30 | 黄永华, 陈忠灿, 汪彬, 等. 控制策略对贮箱热力排气系统性能的影响[J]. 化工学报, 2017, 68(12): 4702-4708. |
HuangY H, ChenZ C, WangB, et al. Effect of pressure control strategy on performance of thermodynamic vent system for storage tank[J]. CIESC Journal, 2017, 68(12): 4702-4708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||