CIESC Journal ›› 2019, Vol. 70 ›› Issue (4): 1318-1330.DOI: 10.11949/j.issn.0438-1157.20180851
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Weiwei SHEN1(),Daoming DENG1(),Qiaoping LIU2,Jing GONG1
Received:
2018-07-25
Revised:
2019-01-17
Online:
2019-04-05
Published:
2019-04-05
Contact:
Daoming DENG
通讯作者:
邓道明
作者简介:
<named-content content-type="corresp-name">沈伟伟</named-content>(1994—),男,硕士研究生,<email>swwogst@163.com</email>|邓道明(1965—),男,博士,副教授,<email>ddmmpf@cup.edu.cn</email>
基金资助:
CLC Number:
Weiwei SHEN, Daoming DENG, Qiaoping LIU, Jing GONG. Prediction model of critical gas velocities in gas wells based on annular mist flow theory[J]. CIESC Journal, 2019, 70(4): 1318-1330.
沈伟伟, 邓道明, 刘乔平, 宫敬. 基于环雾流理论的气井临界流速预测模型[J]. 化工学报, 2019, 70(4): 1318-1330.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20180851
Model | Average prediction error/% | Standard deviation of prediction error/% |
---|---|---|
new model | 3.23 | 9.24 |
Barnea model | -20.12 | 23.64 |
Luo model | 26.40 | 19.16 |
Turner model | -0.68 | 56.43 |
Belfroid model | -30.0 | 9.81 |
MulFlow(flow regime transition) | 2.95 | 40.87 |
MulFlow(minimum shear stress) | 4.45 | 33.37 |
Table 1 Average prediction errors and standard deviation of prediction errors for each model
Model | Average prediction error/% | Standard deviation of prediction error/% |
---|---|---|
new model | 3.23 | 9.24 |
Barnea model | -20.12 | 23.64 |
Luo model | 26.40 | 19.16 |
Turner model | -0.68 | 56.43 |
Belfroid model | -30.0 | 9.81 |
MulFlow(flow regime transition) | 2.95 | 40.87 |
MulFlow(minimum shear stress) | 4.45 | 33.37 |
Model | Correct prediction count of gas well state(loading) | Correct prediction count of gas well state(unloading) | Total correct prediction count of gas well state |
---|---|---|---|
new model | 32/37 | 47/53 | 79/90 |
Barnea model | 37/37 | 41/53 | 78/90 |
Luo model | 37/37 | 38/53 | 75/90 |
Turner model | 28/37 | 51/53 | 79/90 |
Belfroid model | 15/37 | 52/53 | 67/90 |
MulFlow(flow regime transition) | 30/37 | 47/53 | 77/90 |
MulFlow(minimum shear stress) | 37/37 | 28/53 | 65/90 |
Table 2 Correct prediction count of gas well states for Turner data with each model
Model | Correct prediction count of gas well state(loading) | Correct prediction count of gas well state(unloading) | Total correct prediction count of gas well state |
---|---|---|---|
new model | 32/37 | 47/53 | 79/90 |
Barnea model | 37/37 | 41/53 | 78/90 |
Luo model | 37/37 | 38/53 | 75/90 |
Turner model | 28/37 | 51/53 | 79/90 |
Belfroid model | 15/37 | 52/53 | 67/90 |
MulFlow(flow regime transition) | 30/37 | 47/53 | 77/90 |
MulFlow(minimum shear stress) | 37/37 | 28/53 | 65/90 |
Model | Average prediction error/% | Standard deviation of prediction error/% | Correct prediction count of gas well state |
---|---|---|---|
new model | 8.70 | 26.63 | 40/67 |
Barnea model | -4.12 | 22.10 | 22/67 |
Luo model | 51.29 | 37.11 | 62/67 |
Turner model | -42.57 | 14.16 | 1/67 |
Belfroid model | -38.69 | 15.54 | 1/67 |
MulFlow(flow regime transition) | -7.56 | 28.60 | 17/67 |
MulFlow(minimum shear stress) | 12.21 | 39.52 | 38/67 |
Table 3 Prediction error and correct prediction count of gas well states for Veeken data with each model
Model | Average prediction error/% | Standard deviation of prediction error/% | Correct prediction count of gas well state |
---|---|---|---|
new model | 8.70 | 26.63 | 40/67 |
Barnea model | -4.12 | 22.10 | 22/67 |
Luo model | 51.29 | 37.11 | 62/67 |
Turner model | -42.57 | 14.16 | 1/67 |
Belfroid model | -38.69 | 15.54 | 1/67 |
MulFlow(flow regime transition) | -7.56 | 28.60 | 17/67 |
MulFlow(minimum shear stress) | 12.21 | 39.52 | 38/67 |
1 | Luo S . Inception of liquid loading in gas wells and possible solutions[D]. Tulsa: The University of Tulsa, 2013. |
2 | Chen D C , Yao Y , Fu G , et al . A new model for predicting liquid loading in deviated gas wells[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 178-184. |
3 | Belt R J . On the liquid film in inclined annular flow[D]. Delft: Technische Universiteit Delft, 2007. |
4 | Yuan G , Pereyra E , Sarica C , et al . An experimental study on liquid loading of vertical and deviated gas wells[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA: Society of Petroleum Engineers, 2013: SPE-164516-MS. |
5 | Fan Y , Pereyra E , Torres C , et al . Experimental study on the onset of intermittent flow and pseudo-slug characteristics in upward inclined pipes[C]//17th International Conference on Multiphase Production Technology. Cannes, France: BHR Group, 2015: BHR-2015-B1. |
6 | Skopich A , Pereyra E , Sarica C . Pipe-diameter effect on liquid loading in vertical gas wells[J]. SPE Production & Operations, 2015, 30(2): 164-176. |
7 | Brito R , Pereyra E , Sarica C . Effect of well trajectory on liquid removal in horizontal gas wells[J]. Journal of Petroleum Science and Engineering, 2017, 156: 1-11. |
8 | Turner R G , Hubbard M G , Dukler A E . Analysis and prediction of minimum flow rate for the continuous removal of liquid from gas wells[J]. Journal of Petroleum Technology, 1969, 21(11): 1475-1482. |
9 | Coleman S B , Clay H B , Mccurdy D G , et al . A new look at predicting gas-well load-up[J]. Journal of Petroleum Technology, 1991, 43(3): 329-333. |
10 | Nosseir M A , Darwich T A , Sayyouh M H , et al . A new approach for accurate prediction of loading in gas wells under different flowing conditions[J]. SPE Production & Facilities, 2000, 15(4): 241-246. |
11 | Guo B Y , Ghalambor A , Xu C . A systematic approach to predicting liquid loading in gas wells[J]. SPE Production and Operations Symposium, 2006, 21(1): 81-88. |
12 | Fadairo A , Femi-Oyewole D , Falode O A . An improved tool for liquid loading in a gas well[C]//SPE Nigerian Annual International Conference and Exhibition. Lagos, Nigeria: Society of Petroleum Engineers, 2013: SPE-167552-MS. |
13 | Fadairo A , Olugbenga F , Sylvia N C . A new model for predicting liquid loading in a gas well[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 1530-1541. |
14 | Zhou D S , Yuan H . A new model for predicting gas-well liquid loading[J]. SPE Production & Operations, 2010, 25(2): 172-181. |
15 | Li M , Li S L , Sun L T . New view on continuous-removal liquids from gas wells[J]. SPE Production & Facilities, 2002, 17(1): 42-46. |
16 | Awolusi O S . Resolving discrepancies in predicting critical rates in low pressure stripper gas wells[D]. Lubbock: Texas Tech University, 2005. |
17 | 王毅忠, 刘庆文 . 计算气井最小携液临界流量的新方法[J]. 大庆石油地质与开发, 2007, 26(6): 82-85. |
Wang Y Z , Liu Q W . A new method for calculating the minimum critical flow rate of gas wells[J]. Petroleum Geology & Oilfield Development in Daqing, 2007, 26(6): 82-85. | |
18 | Belfroid S , Schiferli W , Alberts G , et al . Prediction onset and dynamic behaviour of liquid loading gas wells[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, 2008: SPE-115567-MS. |
19 | 杨文明, 王明, 陈亮, 等 . 定向气井连续携液临界产量预测模型[J]. 天然气工业, 2009, 29(5): 82-84. |
Yang W M , Wang M , Chen L , et al . A prediction model on calculation of continuous liquid carrying critical production of directional gas wells[J]. Natural Gas Industry, 2009, 29(5): 82-84. | |
20 | 于继飞, 管虹翔, 顾纯巍, 等 . 海上定向气井临界流量预测方法[J]. 特种油气藏, 2011, 18(6): 117-119. |
Yu J F , Guan H X , Gu C W , et al . Prediction of critical flow rate for offshore directional gas wells[J]. Special Oil & Gas Reservoirs, 2011, 18(6): 117-119. | |
21 | 李丽, 张磊, 杨波, 等 . 天然气斜井携液临界流量预测方法[J]. 石油与天然气地质, 2012, 33(4): 650-654. |
Li L , Zhang L , Yang B , et al . Prediction method of critical liquid carrying flow rate for directional gas wells[J]. Oil & Gas Geology, 2012, 33(4): 650-654. | |
22 | 王琦 . 水平井井筒气液两相流动模拟实验研究[D]. 成都: 西南石油大学, 2014. |
Wang Q . Experimental study on gas-liquid flowing in the wellbore of horizontal well[D]. Chengdu: Southwest Petroleum University, 2014. | |
23 | Keuning A . The onset of liquid loading in inclined tubes[D]. Eindhoven: Eindhoven University of Technology, 1998. |
24 | van t Westende J M C . Droplets in annular-dispersed gas-liquid pipe-flows[D]. Delft: Technische Universiteit Delft, 2008. |
25 | Veeken K , Hu B , Schiferli W . Gas-well liquid loading field data analysis and multiphase flow modeling[J]. SPE Production & Operations, 2010, 25(3): 275-284. |
26 | Zabaras G , Dukler A E , Moalem-Maron D . Vertical upward cocurrent gas‐liquid annular flow[J]. AIChE Journal, 1986, 32(5): 829-843. |
27 | Zhang H Q , Wang Q , Sarica C , et al . Unified model for gas-liquid pipe flow via slug dynamics(1): Model development[J]. Journal of Energy Resources Technology, 2003, 125(4): 266-273. |
28 | Zhang H Q , Wang Q , Sarica C , et al . Unified model for gas-liquid pipe flow via slug dynamics(2): Model validation[J]. Journal of Energy Resources Technology, 2003, 125(4): 811-820. |
29 | Barnea D , Shoham O , Taitel Y , et al . Gas-liquid flow in inclined tubes: flow pattern transitions for upward flow[J]. Chemical Engineering Science, 1985, 40(1): 131-136. |
30 | Barnea D . A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1987, 13(1): 1-12. |
31 | Fore L B , Beus S G , Bauer R C . Interfacial friction in gas-liquid annular flow: analogies to full and transition roughness[J]. International Journal of Multiphase Flow, 2000, 26(11): 1755-1769. |
32 | Li J , Almudairis F , Zhang H . Prediction of critical gas velocity of liquid unloading for entire well deviation[C]//International Petroleum Technology Conference. Kuala Lumpur, Malaysia, 2014: IPTC-17846-MS. |
33 | Gurner M , Pereyra E , Sarica C , et al . An experimental study of low liquid loading in inclined pipes from 90° to 45°[C]//SPE Production and Operations Symposium. Oklahoma City, Oklahoma, USA: Society of Petroleum Engineers, 2015: SPE-173631-MS. |
34 | Alsaadi Y , Pereyra E , Torres C , et al . Liquid loading of highly deviated gas wells from 60° to 88°[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: Society of Petroleum Engineers, 2015: SPE-174852-MS. |
35 | Andritsos N , Hanratty T J . Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal, 1987, 33(3): 444-454. |
36 | Shekhar S , Kelkar M , Hearn W J , et al . Improved prediction of liquid loading in gas wells[J]. SPE Production & Operations, 2017, 32(4): 539-550. |
37 | Paz R J , Shoham O . Film-thickness distribution for annular flow in directional wells: horizontal to vertical[J]. SPE Production & Operations, 1999, 4(2): 83-91. |
38 | Barnea D . Transition from annular flow and from dispersed bubble flow—unified models for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow, 1986, 12(5): 733-744. |
39 | Wallis G B . One-dimensional Two-phase Flow[M]. New York: McGraw-Hill, 1969: 315-367. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[4] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[5] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[6] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[7] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[8] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[9] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[10] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[11] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Chunyu LIU, Huanyu ZHOU, Yue MA, Changtao YUE. Drying characteristics and mathematical model of CaO-conditioned oil sludge [J]. CIESC Journal, 2023, 74(7): 3018-3027. |
[14] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[15] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||