CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3202-3209.DOI: 10.11949/0438-1157.20190189
Shihao FENG1(),Xiaofei TANG1,Jian DU2,Qingwei MENG1()
Received:
2019-03-05
Revised:
2019-05-13
Online:
2019-08-05
Published:
2019-08-05
Contact:
Qingwei MENG
通讯作者:
孟庆伟
作者简介:
冯世豪(1994—),男,硕士研究生,<email>liwupu000@126.com</email>
基金资助:
CLC Number:
Shihao FENG, Xiaofei TANG, Jian DU, Qingwei MENG. Asymmetric continuous oxidation in microreactor driven by visible light[J]. CIESC Journal, 2019, 70(8): 3202-3209.
冯世豪, 唐晓飞, 都健, 孟庆伟. 用微反应器实现可见光驱动的不对称氧化连续化反应[J]. 化工学报, 2019, 70(8): 3202-3209.
Add to citation manager EndNote|Ris|BibTeX
序号 | 催化剂用量/%(mol) | 碱(水溶液) | 转化率/% | ee/% |
---|---|---|---|---|
1 | 2.5 | 1% K2CO3 | 100 | 78.0(S) |
2 | 5 | 1% K2CO3 | 100 | 80.4(S) |
3 | 7.5 | 1% K2CO3 | 100 | 82.3(S) |
4 | 10 | 1% K2CO3 | 100 | 85.4(S) |
5 | 15 | 1% K2CO3 | 100 | 85.4(S) |
6 | 20 | 1% K2CO3 | 100 | 85.5(S) |
7 | 10 | 20% K2CO3 | 100 | 85.4(S) |
8 | 10 | 1% Na2CO3 | 100 | 84.9(S) |
9 | 10 | 1% Cs2CO3 | 100 | 85.0(S) |
10 | 10 | 1% K2HPO4、 | 100 | 83.0(SS) |
11 | 10 | 20% K2HPO4 | 100 | 83.0(S) |
Table 1 Catalysts and base screening for asymmetric α-hydroxylation of β-ketoester
序号 | 催化剂用量/%(mol) | 碱(水溶液) | 转化率/% | ee/% |
---|---|---|---|---|
1 | 2.5 | 1% K2CO3 | 100 | 78.0(S) |
2 | 5 | 1% K2CO3 | 100 | 80.4(S) |
3 | 7.5 | 1% K2CO3 | 100 | 82.3(S) |
4 | 10 | 1% K2CO3 | 100 | 85.4(S) |
5 | 15 | 1% K2CO3 | 100 | 85.4(S) |
6 | 20 | 1% K2CO3 | 100 | 85.5(S) |
7 | 10 | 20% K2CO3 | 100 | 85.4(S) |
8 | 10 | 1% Na2CO3 | 100 | 84.9(S) |
9 | 10 | 1% Cs2CO3 | 100 | 85.0(S) |
10 | 10 | 1% K2HPO4、 | 100 | 83.0(SS) |
11 | 10 | 20% K2HPO4 | 100 | 83.0(S) |
序号 | 光敏剂 | 光源 | 转化率/% | ee/% |
---|---|---|---|---|
1 | 亚甲基蓝 | 白光 | 5 | — |
2 | 酞菁 | 白光 | 25 | — |
3 | TPP | 白光 | 100 | 85.0(S) |
4 | TPP | 红光 | 100 | 84.4(S) |
5 | TPP | 蓝光 | 100 | 80.3(S) |
6 | TPP | 无光 | 未反应 | — |
7 | TPP | 50mW/cm2白光 | 60 | 83.7(S) |
Table 2 Photosensitizer and light source screening for asymmetric α-hydroxylation of β-ketoester
序号 | 光敏剂 | 光源 | 转化率/% | ee/% |
---|---|---|---|---|
1 | 亚甲基蓝 | 白光 | 5 | — |
2 | 酞菁 | 白光 | 25 | — |
3 | TPP | 白光 | 100 | 85.0(S) |
4 | TPP | 红光 | 100 | 84.4(S) |
5 | TPP | 蓝光 | 100 | 80.3(S) |
6 | TPP | 无光 | 未反应 | — |
7 | TPP | 50mW/cm2白光 | 60 | 83.7(S) |
序号 | v a/(ml/min) | v b/ (ml/min) | v c/ (ml/min) | p/MPa | T/℃ | 转化率/% | ee/% |
---|---|---|---|---|---|---|---|
1 | 1.5 | 1.5 | 5.0 | 0.5 | 0 | 100 | 85.6(S) |
2 | 1.5 | 1.5 | 7.5 | 0.5 | 0 | 100 | 85.7(S) |
3 | 1.5 | 1.5 | 10.0 | 0.5 | 0 | 100 | 87.2(S) |
4 | 1.5 | 1.5 | 12.5 | 0.5 | 0 | 100 | 85.2(S) |
5 | 1.5 | 1.5 | 15.0 | 0.5 | 0 | 100 | 86.4(S) |
6 | 1.5 | 1.5 | 20.0 | 0.5 | 0 | 100 | 85.1(S) |
7 | 1.5 | 1.5 | 25.0 | 0.5 | 0 | 100 | 86.3(S) |
8 | 1.0 | 2.0 | 10.0 | 0.5 | 0 | 100 | 84.4(S) |
9 | 2.0 | 1.0 | 10.0 | 0.5 | 0 | 100 | 85.5(S) |
10 | 0.5 | 2.5 | 10.0 | 0.5 | 0 | 100 | 84.6(S) |
11 | 2.5 | 0.5 | 10.0 | 0.5 | 0 | 100 | 84.8(S) |
12 | 1.5 | 1.5 | 10.0 | 0 | 0 | 100 | 83.5(S) |
13 | 1.5 | 1.5 | 10.0 | 0.8 | 0 | 100 | 84.5(S) |
14 | 1.5 | 1.5 | 10.0 | 0.5 | 5 | 100 | 85.4(S) |
15 | 1.5 | 1.5 | 10.0 | 0.5 | 10 | 100 | 84.7(S) |
16 | 1.5 | 1.5 | 10.0 | 0.5 | 15 | 100 | 84.9(S) |
17 | 1.5 | 1.5 | 10.0 | 0.5 | 20 | 100 | 84.8(S) |
18 | 1.5 | 1.5 | 10.0 | 0.5 | 30 | 100 | 83.8(S) |
Table 3 Optimization of reaction for aymmetric α-hydroxylation of β-ketoester
序号 | v a/(ml/min) | v b/ (ml/min) | v c/ (ml/min) | p/MPa | T/℃ | 转化率/% | ee/% |
---|---|---|---|---|---|---|---|
1 | 1.5 | 1.5 | 5.0 | 0.5 | 0 | 100 | 85.6(S) |
2 | 1.5 | 1.5 | 7.5 | 0.5 | 0 | 100 | 85.7(S) |
3 | 1.5 | 1.5 | 10.0 | 0.5 | 0 | 100 | 87.2(S) |
4 | 1.5 | 1.5 | 12.5 | 0.5 | 0 | 100 | 85.2(S) |
5 | 1.5 | 1.5 | 15.0 | 0.5 | 0 | 100 | 86.4(S) |
6 | 1.5 | 1.5 | 20.0 | 0.5 | 0 | 100 | 85.1(S) |
7 | 1.5 | 1.5 | 25.0 | 0.5 | 0 | 100 | 86.3(S) |
8 | 1.0 | 2.0 | 10.0 | 0.5 | 0 | 100 | 84.4(S) |
9 | 2.0 | 1.0 | 10.0 | 0.5 | 0 | 100 | 85.5(S) |
10 | 0.5 | 2.5 | 10.0 | 0.5 | 0 | 100 | 84.6(S) |
11 | 2.5 | 0.5 | 10.0 | 0.5 | 0 | 100 | 84.8(S) |
12 | 1.5 | 1.5 | 10.0 | 0 | 0 | 100 | 83.5(S) |
13 | 1.5 | 1.5 | 10.0 | 0.8 | 0 | 100 | 84.5(S) |
14 | 1.5 | 1.5 | 10.0 | 0.5 | 5 | 100 | 85.4(S) |
15 | 1.5 | 1.5 | 10.0 | 0.5 | 10 | 100 | 84.7(S) |
16 | 1.5 | 1.5 | 10.0 | 0.5 | 15 | 100 | 84.9(S) |
17 | 1.5 | 1.5 | 10.0 | 0.5 | 20 | 100 | 84.8(S) |
18 | 1.5 | 1.5 | 10.0 | 0.5 | 30 | 100 | 83.8(S) |
实验序号 | 分离收率/% | ee/% |
---|---|---|
1 | 95 | 87.2 |
2 | 95.3 | 86.8 |
3 | 95.3 | 87.0 |
Table 4 Results of repeated experiments of best condition
实验序号 | 分离收率/% | ee/% |
---|---|---|
1 | 95 | 87.2 |
2 | 95.3 | 86.8 |
3 | 95.3 | 87.0 |
1 | Romero N A , Nicewicz D A . Organic photoredox catalysis[J]. Chem. Review, 2016, 116: 10075-10166. |
2 | Narayanam J M R , Stephenson C R J . Visible light photoredox catalysis: applications in organic synthesis[J]. Chemical Society Reviews, 2010, 40(1): 102-113. |
3 | Heggo D , Ookawara S . Multiphase photocatalytic microreactors[J]. Chemical Engineering Science, 2017, 196: 67-77. |
4 | Higuchi T , Heide C , Ullmann K , et al . Light-field-driven currents in graphene[J]. Nature, 2017, 550(7675): 224-228. |
5 | Seo H , Katcher M H , Jamison T F . Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow[J]. Nature Chemistry, 2016, 9(5): 453-456. |
6 | Huang H , Li X , Yu C , et al . Visible-light-promoted nickel- and organic-dye‐cocatalyzed formylation reaction of aryl halides and triflates and vinyl bromides with diethoxyacetic acid as a formyl equivalent[J]. Angewandte Chemie, 2017, 56(6): 1500-1505. |
7 | Nicewicz D A , Nguyen T M . Cheminform abstract: recent applications of organic dyes as photoredox catalysts in organic synthesis[J]. ChemInform, 2014, 4(1): 355-360. |
8 | 丁奎岭 . 不对称催化新概念与新方法[M]. 北京: 化学工业出版社, 2009. |
Ding K L . New Concepts and Methods: Asymmetric Catalysis[M]. Beijing: Chemical Industry Press, 2009. | |
9 | Sim S B D , Wang M , Zhao Y . Phase-transfer-catalyzed enantioselective α-hydroxylation of acyclic and cyclic ketones with oxygen[J]. ACS Catalysis, 2015, 5(6): 3609-3612. |
10 | Liang Y F , Jiao N . Highly efficient C—H hydroxylation of carbonyl compounds with oxygen under mild conditions[J]. Angewandte Chemie, 2014, 126(2): 558-562. |
11 | Piera J , Backvall J E . Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer—a biomimetic approach[J]. Angewandte Chemie (International ed. in English), 2008, 47(19): 3506-3523. |
12 | Lee D S , Amara Z , Clark C A , et al . Continuous photo-oxidation in a vortex reactor: efficient operations using air drawn from the laboratory[J]. Organic Process Research & Development, 2017, 21(7): 1042-1050. |
13 | Kockmann N , Gottsponer M , Zimmermann B , et al . ChemInform abstract: enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production[J]. Chemistry — A European Journal, 2010, 14(25): 7470-7477. |
14 | Loubière K , Oelgemöller M , Aillet T , et al . Continuous-flow photochemistry: a need for chemical engineering[J]. Chemical Engineering & Processing Process Intensification, 2016, 104(6): 120-132. |
15 | Hejda S , Drhova M , Kristal J , et al . Microreactor as efficient tool for light induced oxidation reactions[J]. Chemical Engineering Journal, 2014, 255(7): 178-184. |
16 | Colmenares J C , Varma R S , Nair V , et al . Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors[J]. Chemical Society Reviews, 2017, 46(22): 6675-6686. |
17 | Cambié D , Zhao F , Hessel V , et al . A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry[J]. Angewandte Chemie International Edition, 2017, 56(4): 1050-1054. |
18 | Emmanuel N , Mendoza C , Winter M , et al . Scalable photocatalytic oxidation of methionine under continuous-flow conditions[J]. Organic Process Research & Development, 2017, 21(9): 1435-1438. |
19 | Yoshida J , Kim H , Nagaki A . Green and sustainable chemical synthesis using flow microreactors[J]. ChemSusChem, 2011, 4(3): 331-340. |
20 | 骆广生, 王凯, 王佩坚, 等 . 微反应器内聚合物合成研究进展[J]. 化工学报, 2014, 65(7): 2563-2573. |
Luo G S , Wang K , Wang P J , et al . Advances in polymer synthesis in microreactors[J]. CIESC Journal, 2014, 65(7): 2563-2573. | |
21 | Gilmore K , Seeberger P H . Continuous flow photochemistry[J]. Chemical Record, 2014, 14(3): 410-418. |
22 | Fanelli F , Parisi G , Degennaro L , et al . Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis[J]. Beilstein Journal of Organic Chemistry, 2017, 13(1): 520-542. |
23 | Ding W , Xiao W J . Bifunctional photocatalysts for enantioselective aerobic oxidation of β-ketoesters[J]. Journal of the American Chemical Society, 2016, 139(1): 63-66. |
24 | Liu J , Ding W , Zhou Q Q , et al . Enantioselective di-/perfluoroalkylation of β-ketoesters enabled by cooperative photoredox/nickel catalysis[J]. Organic Letters, 2018, 20(2): 461-464. |
25 | Tang X F , Feng S H , Wang Y K , et al . Bifunctional metal-free photo-organocatalysts for enantioselective aerobic oxidation of β-dicarbonyl compounds[J]. Tetrahedron, 2018, 74(27): 3391-3780. |
26 | Lian M , Meng Q , Gao Z , et al . Enantioselective photooxygenation of β-keto esters by chiral phase-transfer catalysis using molecular oxygen[J]. Cheminform, 2012, 7(9): 2019-2023. |
27 | 孟庆伟, 赵静喃, 王亚坤, 等 . 有机催化β-酮酸酯不对称α-羟基化反应研究进展[J]. 化工进展, 2016, 35(Z2): 2563-2573. |
Meng Q W , Zhao J N , Wang Y K , et al . Review on enantioselective α-hydroxylation of β-keto ester[J]. Chemical Industry and Engineering Progress, 2016, 35(Z2): 2563-2573. | |
28 | Wang Y , Hang Y , Meng Q W , et al . A series of cinchona-derived N-oxide phase-transfer catalysts: application to the photo-organocatalytic enantioselective alpha-hydroxylation of β-dicarbonyl compounds[J]. Journal of Organic Chemistry, 2016, 81(16): 7042-7050. |
29 | Wang Y K , Zheng Z D , Meng Q W , et al . Photo-organocatalytic enantioselective α-hydroxylation of β-keto esters and β-keto amides with oxygen under phase transfer catalysis[J]. Green Chem., 2016, 18(20): 5493-5499. |
30 | Coley C W , Abolhasani M , Lin H K , et al . Material-efficient microfluidic platform for exploratory studies of visible-light photoredox catalysis[J]. Angewandte Chemie, 2017, 56(33): 9847-9850. |
31 | Zou Y Q , Chen J R , Xiao W J , et al . Highly efficient aerobic oxidative hydroxylation of arylboronic acids: photoredox catalysis using visible light[J]. Angewandte Chemie, 2012, 124(3): 808-812. |
32 | Pieber B , Shalom M , Antonietti M , et al . Continuous heterogeneous photocatalysis in serial micro-batch reactors[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(31): 9976-9979. |
[1] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[2] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[3] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[4] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[5] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[6] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[7] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
[8] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[9] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
[10] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[11] | Feishi XU, Lixia YANG, Guangwen CHEN. Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor [J]. CIESC Journal, 2022, 73(6): 2552-2562. |
[12] | Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell [J]. CIESC Journal, 2022, 73(5): 2149-2157. |
[13] | Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261. |
[14] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
[15] | Yiming XU, Hua YUAN, Suli LIU, Ping LI, Peirong YAN, Xi ZHAO, Junhua LU, Wei ZHAO, Xuelan ZHANG. Study on the continuous synthesis process of industrial mixed linear alkyl benzene sulfonates in a microchannel reactor [J]. CIESC Journal, 2022, 73(3): 1184-1193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||