CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5043-5051.DOI: 10.11949/0438-1157.20200796
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Ningning CHENG1(),Lihua ZENG1,Yulin DENG1,Hailong PENG1,2,Kuan HUANG1,2()
Received:
2020-06-22
Revised:
2020-09-02
Online:
2020-11-05
Published:
2020-11-05
Contact:
Kuan HUANG
程宁宁1(),曾丽花1,邓毓麟1,彭海龙1,2,黄宽1,2()
通讯作者:
黄宽
作者简介:
程宁宁(1997—),女,硕士研究生,基金资助:
CLC Number:
Ningning CHENG,Lihua ZENG,Yulin DENG,Hailong PENG,Kuan HUANG. Physical properties characterizations and NH3 capture performance investigation of novel phenol-based deep eutectic solvents[J]. CIESC Journal, 2020, 71(11): 5043-5051.
程宁宁,曾丽花,邓毓麟,彭海龙,黄宽. 新型酚基深共熔溶剂的物性表征及NH3捕集性能研究[J]. 化工学报, 2020, 71(11): 5043-5051.
Add to citation manager EndNote|Ris|BibTeX
溶剂 | a /(g/cm3) | b×104 /(g/(cm3?K)) | η0/(mPa·s) | D/K | T0/K |
---|---|---|---|---|---|
[Emim]Cl+苯酚 (1∶1) | 1.30369 | -6.21786 | 0.00426 | 483.8003 | 253.38626 |
[Emim]Cl+间苯二酚 (1∶1) | 1.35456 | -5.8535 | 9.68005 | 211.15308 | 253.79738 |
[Emim]Cl+间苯三酚 (1∶1) | 1.3929 | -5.51786 | 0.0002263 | 4594.81656 | 39.92557 |
[Emim]Cl+间苯三酚 (2∶1) | 1.35886 | -5.55 | 0.00226 | 2757.6287 | 89.99133 |
[Emim]Cl+间苯三酚 (3∶1) | 1.34481 | -5.57143 | 0.00118 | 3153.4094 | 65.12275 |
Table 1 Fitted parameters for Eqs. (2)—(3)
溶剂 | a /(g/cm3) | b×104 /(g/(cm3?K)) | η0/(mPa·s) | D/K | T0/K |
---|---|---|---|---|---|
[Emim]Cl+苯酚 (1∶1) | 1.30369 | -6.21786 | 0.00426 | 483.8003 | 253.38626 |
[Emim]Cl+间苯二酚 (1∶1) | 1.35456 | -5.8535 | 9.68005 | 211.15308 | 253.79738 |
[Emim]Cl+间苯三酚 (1∶1) | 1.3929 | -5.51786 | 0.0002263 | 4594.81656 | 39.92557 |
[Emim]Cl+间苯三酚 (2∶1) | 1.35886 | -5.55 | 0.00226 | 2757.6287 | 89.99133 |
[Emim]Cl+间苯三酚 (3∶1) | 1.34481 | -5.57143 | 0.00118 | 3153.4094 | 65.12275 |
[Emim]Cl+苯酚 (1∶1 ) | [Emim]Cl+间苯二酚 (1∶1) | [Emim]Cl+间苯三酚 (1∶1) | |||
---|---|---|---|---|---|
2.9 | 0.11±0.03 | 2.6 | 0.29±0.03 | 2.3 | 0.55±0.04 |
12.3 | 0.28±0.03 | 12.4 | 0.81±0.03 | 12.2 | 1.00±0.04 |
25.1 | 0.58±0.03 | 25.5 | 1.19±0.03 | 26.6 | 1.48±0.04 |
52 | 0.93±0.03 | 50.8 | 1.74±0.03 | 44.5 | 1.99±0.04 |
76.9 | 1.30±0.03 | 75.8 | 2.16±0.03 | 72.2 | 2.90±0.04 |
100.7 | 1.59±0.03 | 101.4 | 2.57±0.03 | 108.2 | 3.74±0.04 |
150 | 2.27±0.03 | 149.4 | 3.36±0.03 | 148.3 | 4.45±0.04 |
200.4 | 2.90±0.03 | 200.9 | 4.18±0.03 | 199 | 5.38±0.04 |
Table 2 Solubilities of NH3 in [Emim]Cl+phenol (1∶1), [Emim]Cl+resorcinol (1∶1), [Emim]Cl+phloroglucinol (1∶1) at 313.2 K
[Emim]Cl+苯酚 (1∶1 ) | [Emim]Cl+间苯二酚 (1∶1) | [Emim]Cl+间苯三酚 (1∶1) | |||
---|---|---|---|---|---|
2.9 | 0.11±0.03 | 2.6 | 0.29±0.03 | 2.3 | 0.55±0.04 |
12.3 | 0.28±0.03 | 12.4 | 0.81±0.03 | 12.2 | 1.00±0.04 |
25.1 | 0.58±0.03 | 25.5 | 1.19±0.03 | 26.6 | 1.48±0.04 |
52 | 0.93±0.03 | 50.8 | 1.74±0.03 | 44.5 | 1.99±0.04 |
76.9 | 1.30±0.03 | 75.8 | 2.16±0.03 | 72.2 | 2.90±0.04 |
100.7 | 1.59±0.03 | 101.4 | 2.57±0.03 | 108.2 | 3.74±0.04 |
150 | 2.27±0.03 | 149.4 | 3.36±0.03 | 148.3 | 4.45±0.04 |
200.4 | 2.90±0.03 | 200.9 | 4.18±0.03 | 199 | 5.38±0.04 |
[Emim]Cl+间苯三酚 (1∶1) | [Emim]Cl+间苯三酚 (2∶1) | [Emim]Cl+间苯三酚 (3∶1) | |||
---|---|---|---|---|---|
2.3 | 0.55±0.04 | 6.1 | 0.34±0.04 | 4 | 0.18±0.04 |
12.2 | 1.00±0.04 | 13.5 | 0.56±0.04 | 11.4 | 0.43±0.04 |
26.6 | 1.48±0.04 | 26.8 | 0.91±0.04 | 24.9 | 0.74±0.04 |
44.5 | 1.99±0.04 | 50.4 | 1.39±0.04 | 50.7 | 1.19±0.04 |
72.2 | 2.90±0.04 | 77.2 | 1.88±0.04 | 75 | 1.57±0.04 |
108.2 | 3.74±0.04 | 100.1 | 2.27±0.05 | 103.1 | 1.98±0.04 |
148.3 | 4.45±0.04 | 151.6 | 3.08±0.05 | 150.4 | 2.72±0.04 |
199 | 5.38±0.04 | 199.1 | 3.83±0.05 | 200.5 | 3.43±0.04 |
Table 3 Solubilities of NH3 in [Emim]Cl+phloroglucinol DESs with different molar ratios at 313.2 K
[Emim]Cl+间苯三酚 (1∶1) | [Emim]Cl+间苯三酚 (2∶1) | [Emim]Cl+间苯三酚 (3∶1) | |||
---|---|---|---|---|---|
2.3 | 0.55±0.04 | 6.1 | 0.34±0.04 | 4 | 0.18±0.04 |
12.2 | 1.00±0.04 | 13.5 | 0.56±0.04 | 11.4 | 0.43±0.04 |
26.6 | 1.48±0.04 | 26.8 | 0.91±0.04 | 24.9 | 0.74±0.04 |
44.5 | 1.99±0.04 | 50.4 | 1.39±0.04 | 50.7 | 1.19±0.04 |
72.2 | 2.90±0.04 | 77.2 | 1.88±0.04 | 75 | 1.57±0.04 |
108.2 | 3.74±0.04 | 100.1 | 2.27±0.05 | 103.1 | 1.98±0.04 |
148.3 | 4.45±0.04 | 151.6 | 3.08±0.05 | 150.4 | 2.72±0.04 |
199 | 5.38±0.04 | 199.1 | 3.83±0.05 | 200.5 | 3.43±0.04 |
Entry | Solvent | T/K | NH3/CO2选择性 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
1 | [Emim]Cl+间苯三酚 (1∶1) | 298.2 | 100.5 | 4.983 | 98.8 | 0.034 | 147 | 本文 |
2 | [Emim]Cl+间苯三酚 (1∶1) | 313.2 | 108.9 | 3.742 | 99.5 | 0.027 | 139 | 本文 |
3 | [Emim]Cl+间苯三酚 (1∶1) | 333.2 | 119.6 | 3.23 | 100.3 | 0.019 | 170 | 本文 |
4 | [Emim]Cl+间苯三酚 (1∶1) | 353.2 | 92.1 | 1.9 | 100.4 | 0.014 | 136 | 本文 |
5 | ChCl+urea(1∶2) | 298.2 | 95 | 2.213 | — | — | — | [ |
6 | [Bmim][BF4] | 298.4 | 128 | 0.911 | — | — | — | [ |
7 | [Bmim][PF6] | 298.0 | 174 | 1.843 | — | — | — | [ |
8 | ChCl +EG (1∶2) | 313.2 | 100.5 | 2.729 | — | — | — | [ |
9 | ChCl+Res+Gly (1∶3∶5) | 313.2 | 101.3 | 7.647 | 100 | 0.021 | 369 | [ |
10 | [bmim][MeSO3]+urea(1∶1) | 313.2 | 172.6 | 1.049 | — | — | — | [ |
11 | [Emim][SCN] | 298.2 | 101.3 | 2.642 | — | — | — | [ |
12 | ChCl+PhOH+EG (1∶5∶4) | 298.2 | 101.3 | 9.619 | 101.3 | 0.045 | 214 | [ |
13 | [EtOHmim][BF4] | 313.2 | 115.6 | 3.07 | 100 | 0.05 | 61 | [ |
14 | [EtOHmim][PF6] | 313.2 | 107.9 | 2.48 | 100 | 0.039 | 64 | [ |
Table 4 Comparison with other deep eutectic solvents and ionic liquids for NH3 or CO2 absorption
Entry | Solvent | T/K | NH3/CO2选择性 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
1 | [Emim]Cl+间苯三酚 (1∶1) | 298.2 | 100.5 | 4.983 | 98.8 | 0.034 | 147 | 本文 |
2 | [Emim]Cl+间苯三酚 (1∶1) | 313.2 | 108.9 | 3.742 | 99.5 | 0.027 | 139 | 本文 |
3 | [Emim]Cl+间苯三酚 (1∶1) | 333.2 | 119.6 | 3.23 | 100.3 | 0.019 | 170 | 本文 |
4 | [Emim]Cl+间苯三酚 (1∶1) | 353.2 | 92.1 | 1.9 | 100.4 | 0.014 | 136 | 本文 |
5 | ChCl+urea(1∶2) | 298.2 | 95 | 2.213 | — | — | — | [ |
6 | [Bmim][BF4] | 298.4 | 128 | 0.911 | — | — | — | [ |
7 | [Bmim][PF6] | 298.0 | 174 | 1.843 | — | — | — | [ |
8 | ChCl +EG (1∶2) | 313.2 | 100.5 | 2.729 | — | — | — | [ |
9 | ChCl+Res+Gly (1∶3∶5) | 313.2 | 101.3 | 7.647 | 100 | 0.021 | 369 | [ |
10 | [bmim][MeSO3]+urea(1∶1) | 313.2 | 172.6 | 1.049 | — | — | — | [ |
11 | [Emim][SCN] | 298.2 | 101.3 | 2.642 | — | — | — | [ |
12 | ChCl+PhOH+EG (1∶5∶4) | 298.2 | 101.3 | 9.619 | 101.3 | 0.045 | 214 | [ |
13 | [EtOHmim][BF4] | 313.2 | 115.6 | 3.07 | 100 | 0.05 | 61 | [ |
14 | [EtOHmim][PF6] | 313.2 | 107.9 | 2.48 | 100 | 0.039 | 64 | [ |
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
1 | 0.54±0.08 | 2.3 | 0.55±0.04 | 4.4 | 0.33±0.05 | 11.1 | 0.14±0.03 |
10.2 | 1.49±0.08 | 12.2 | 1.00±0.04 | 16.4 | 0.83±0.05 | 23.1 | 0.32±0.03 |
27.6 | 2.05±0.08 | 26.6 | 1.48±0.04 | 32.4 | 1.26±0.05 | 34.1 | 0.71±0.03 |
51.2 | 3.01±0.08 | 44.5 | 1.99±0.04 | 55.4 | 1.75±0.05 | 61.8 | 1.33±0.03 |
78.7 | 4.08±0.08 | 72.2 | 2.90±0.04 | 78.4 | 2.48±0.05 | 92.1 | 1.90±0.03 |
100.1 | 4.98±0.08 | 108.2 | 3.74±0.04 | 118.4 | 3.28±0.05 | 117.1 | 2.48±0.03 |
147.6 | 6.21±0.08 | 148.3 | 4.45±0.04 | 153.4 | 4.03±0.05 | 169.1 | 3.40±0.03 |
193.1 | 7.98±0.08 | 199 | 5.38±0.04 | 210.4 | 5.00±0.05 | 219.1 | 4.17±0.03 |
Table 5 Solubilities of NH3 in [Emim]Cl+phloroglucinol (1∶1) at different temperatures
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
1 | 0.54±0.08 | 2.3 | 0.55±0.04 | 4.4 | 0.33±0.05 | 11.1 | 0.14±0.03 |
10.2 | 1.49±0.08 | 12.2 | 1.00±0.04 | 16.4 | 0.83±0.05 | 23.1 | 0.32±0.03 |
27.6 | 2.05±0.08 | 26.6 | 1.48±0.04 | 32.4 | 1.26±0.05 | 34.1 | 0.71±0.03 |
51.2 | 3.01±0.08 | 44.5 | 1.99±0.04 | 55.4 | 1.75±0.05 | 61.8 | 1.33±0.03 |
78.7 | 4.08±0.08 | 72.2 | 2.90±0.04 | 78.4 | 2.48±0.05 | 92.1 | 1.90±0.03 |
100.1 | 4.98±0.08 | 108.2 | 3.74±0.04 | 118.4 | 3.28±0.05 | 117.1 | 2.48±0.03 |
147.6 | 6.21±0.08 | 148.3 | 4.45±0.04 | 153.4 | 4.03±0.05 | 169.1 | 3.40±0.03 |
193.1 | 7.98±0.08 | 199 | 5.38±0.04 | 210.4 | 5.00±0.05 | 219.1 | 4.17±0.03 |
Fig.6 Recycling of NH3 absorption in [Emim]Cl+phloroglucinol (1∶1) (absorption condition: 333.2 K, about 100 kPa; desorption condition: 363.2 K, about 0.1 kPa)
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
51.4 | 0.021±0.005 | 51.4 | 0.015±0.005 | 49.8 | 0.007±0.004 | 50.1 | 0.005±0.004 |
98.8 | 0.034±0.005 | 100.7 | 0.027±0.005 | 100.3 | 0.019±0.005 | 100.4 | 0.014±0.004 |
149.5 | 0.053±0.005 | 150.7 | 0.040±0.005 | 149.2 | 0.031±0.005 | 150.3 | 0.022±0.004 |
198.7 | 0.068±0.005 | 201 | 0.051±0.005 | 199.5 | 0.041±0.005 | 199.7 | 0.032±0.004 |
248.3 | 0.085±0.005 | 249.7 | 0.063±0.005 | 249.3 | 0.050±0.005 | 249.7 | 0.041±0.004 |
Table 6 Solubilities of CO2 in [Emim]Cl+phloroglucinol (1∶1) at different temperatures
298.2 K | 313.2 K | 333.2 K | 353.2 K | ||||
---|---|---|---|---|---|---|---|
51.4 | 0.021±0.005 | 51.4 | 0.015±0.005 | 49.8 | 0.007±0.004 | 50.1 | 0.005±0.004 |
98.8 | 0.034±0.005 | 100.7 | 0.027±0.005 | 100.3 | 0.019±0.005 | 100.4 | 0.014±0.004 |
149.5 | 0.053±0.005 | 150.7 | 0.040±0.005 | 149.2 | 0.031±0.005 | 150.3 | 0.022±0.004 |
198.7 | 0.068±0.005 | 201 | 0.051±0.005 | 199.5 | 0.041±0.005 | 199.7 | 0.032±0.004 |
248.3 | 0.085±0.005 | 249.7 | 0.063±0.005 | 249.3 | 0.050±0.005 | 249.7 | 0.041±0.004 |
1 | Meng W, Zhong Q, Yun X, et al. Improvement of a global high-resolution ammonia emission inventory for combustion and industrial sources with new data from the residential and transportation sectors[J]. Environ. Sci. Technol., 2017, 51: 2821-2829. |
2 | Rahimpour M R, Asgari A. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor[J]. J. Hazard. Mater., 2008, 153: 557-565. |
3 | Travlou N A, Bandosz T J. N-Doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media[J]. Carbon, 2017, 117: 228-239. |
4 | Ashtari A K, Majd A M S, Riskowski G L, et al. Removing ammonia from air with a constant pH, slightly acidic water spray wet scrubber using recycled scrubbing solution[J]. Environ. Sci. Eng., 2016, 10: 159-168. |
5 | Tao W, Ukwuani A T. Coupling thermal stripping and acid absorption for ammonia recovery from dairy manure: ammonia volatilization kinetics and effects of temperature, pH and dissolved solids content[J]. Chem. Eng. J., 2015, 280: 188-196. |
6 | Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chem. Soc. Rev., 2008, 37: 123-150. |
7 | Rogers R D, Seddon K R. Ionic liquid — solvents of the future?[J]. Science, 2003, 302: 792-793. |
8 | Earle M J, Seddon K R. Ionic liquids: green solvents for the future[J]. Pure Appl. Chem., 2000, 72: 1391-1398. |
9 | Chen F F, Hang K, Fan J P, et al. Chemical solvent in chemical solvent: a class of hybrid materials for effective capture of CO2[J].AIChE J., 2018, 64(2): 632-639. |
10 | Yokozeki A, Shiflett M B. Ammonia solubilities in room-temperature ionic liquids[J]. Ind. Eng. Chem. Res., 2007, 46: 1605-1610. |
11 | Yokozeki A, Shiflett M B. Vapor-liquid equilibria of ammonia plus ionic liquid mixtures[J]. Appl. Energy, 2007, 84: 1258-1273. |
12 | Shang D W, Bai L, Zeng S J, et al. Enhanced NH3 capture by imidazolium-based protic ionic liquids with different anions and cation substituents[J]. J. Chem. Technol. Biotechnol., 2018, 93: 1228-1236. |
13 | Wang J L, Zeng S J, Huo F, et al. Metal chloride anion-based ionic liquids for efficient separation of NH3[J]. J. Cleaner Prod., 2019, 206: 661-669. |
14 | Zhang Q H, Vigier K D O, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications[J]. Chem. Soc. Rev., 2012, 41: 7108-7146. |
15 | Smith E L, Abbott A P, Ryder K S, et al. Deep eutectic solvents (DESs) and their applications[J]. Chem. Rev., 2014, 114: 11060-11082. |
16 | García G, Aparicio S, Ullah R, et al. Deep eutectic solvents: physicochemical properties and gas separation applications[J]. Energy Fuels, 2015, 29: 2616-2644. |
17 | Carriazo D, Concepcion S M, Concepcion G M, et al. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials[J]. Chem. Soc. Rev., 2012, 41(14): 4996-5014. |
18 | Wagle D V, Zhao H, Baker G A, et al. Deep eutectic solvents: sustainable media for nanoscale and functional materials[J]. Acc. Chem. Res., 2014, 47(8): 2299-2308. |
19 | Abbott A P, Capper G, Mckenzie K J, et al. Electrodeposition of zinc-tin alloys from deep eutectic solvents based on choline chloride[J]. Electroanal. Chem., 2007, 599(2): 288-294. |
20 | Zhang K, Ren S H, Hou Y C, et al. Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents[J]. J. Hazard. Mater., 2017, 324: 457-463. |
21 | Deng D S, Liu X B, Gao B. Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents[J]. Ind. Eng. Chem. Res., 2017, 56: 13850-13856. |
22 | Ghaedi H, Ayoub M, Sufian S, et al. CO2 capture with the help of phosphonium-based deep eutectic solvents[J]. J. Mol. Liq., 2017, 243: 564-571. |
23 | Sun S Y, Niu Y X, Xu Q, et al. Efficient SO2 absorptions by four kinds of deep eutectic solvents based on choline chloride[J]. Ind. Eng. Chem. Res., 2015, 54: 8019-8024. |
24 | Liu F J, Chen W, Mi J X, et al. Thermodynamic and molecular insights into the absorption of H2S, CO2, and CH4 in choline chloride plus urea mixtures[J]. AIChE J., 2019, 65(5): e16574. |
25 | Akhmetshina A I, Petukhov A N, Mechergui A, et al. Evaluation of methanesulfonate-based deep eutectic solvent for ammonia sorption[J]. J. Chem. Eng. Data, 2018, 63: 1896-1904. |
26 | Duan X Z, Gao B, Zhang C, et al. Solubility and thermodynamic properties of NH3 in choline chloride-based deep eutectic solvents[J]. J. Chem. Thermodyn., 2019, 133: 79-84. |
27 | Zhong F Y, Huang K, Peng H L. Solubilities of ammonia in choline chloride plus urea at (298.2—353.2) K and (0—300) kPa [J]. J. Chem. Thermodyn., 2019, 129: 5-11. |
28 | Li Y H, Ali M C, Yang Q W, et al. Hybrid deep eutectic solvents with flexible hydrogen-bonded supramolecular networks for highly efficient uptake of NH3[J]. ChemSusChem, 2017, 10: 3368-3377. |
29 | Zhong F Y, Peng H L, Tao D J, et al. Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3[J]. ACS Sustain. Chem. Eng., 2019, 7: 3258-3266. |
30 | Zhong F Y, Zhou L S, Shen J. et al. Rational design of azole-based deep eutectic solvents for highly efficient and reversible capture of ammonia[J]. Sustain. Chem. Eng., 2019, 7(16): 14170-14179. |
31 | Li Z L, Zhong F Y, Zhou L S, et al. Deep eutectic solvents formed by N-methylacetamide and heterocyclic weak acids for highly efficient and reversible chemical absorption of ammonia[J]. Ind. Eng. Chem. Res., 2020, 59(5): 2060-2067. |
32 | Deng D S, Gao B, Zhang C, et al. Investigation of protic NH4SCN-based deep eutectic solvents as highly efficient and reversible NH3 absorbents[J]. Chem. Eng. J., 2019, 358:936-943. |
33 | Jiang W J, Zhong F Y, Liu Y, et al. Effective and reversible capture of NH3 by ethylamine hydrochloride plus glycerol deep eutectic solvents[J]. ACS Sustain. Chem. Eng., 2019, 7: 10552-10560. |
34 | Zhang J Y, Huang K. Densities and viscosities of, and NH3 solubilities in deep eutectic solvents composed of ethylamine hydrochloride and acetamide[J]. J. Chem. Thermodyn., 2019, 139: 105883. |
35 | Zhang J Y, Kong L Y, Huang K, et al. NH3 solubilities and physical properties of ethylamine hydrochloride plus urea deep eutectic solvents[J]. Journal of Chemical & Engineering Data, 2019, 9: 3821-3830. |
36 | Jiang W J, Zhong F Y, Zhou L S, et al. Chemically dual-site capture of NH3 by unprecedently low-viscous deep eutectic solvents[J]. Chem. Commun., 2020, 56(16): 2399-2402. |
37 | Huang K, Zhang X M, Hu X B, et al. Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2[J]. AIChE J., 2016, 62: 4480-4490. |
38 | Huang K, Zhang X M, Zhou L S, et al. Highly efficient and selective absorption of H2S in phenolic ionic liquids: a cooperative result of anionic strong basicity and cationic hydrogen-bond donation[J]. Chem. Eng. Sci., 2017, 173: 253-263. |
39 | 曾少娟,尚大伟,余敏,等. 离子液体在氨气分离回收中的应用及展望[J].化工学报, 2019, 70(3): 791-800. |
Zeng S J, Shang D W, Yu M, et al. Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3): 791-800. | |
40 | Li G H, Zhou Q, Zhang X P, et al. Solubilities of ammonia in basic imidazolium ionic liquids[J]. Fluid Phase Equilibr., 2010, 297(1): 34-39. |
41 | Li Z J, Zhang X P, Dong H F, et al. Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids[J]. RSC Adv., 2015, 5: 81362-81370. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[4] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[5] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[6] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[7] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[9] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[10] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[11] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[12] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[13] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[14] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[15] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||