CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3469-3479.DOI: 10.11949/0438-1157.20200300
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhao CHEN(),Meng CHEN,Jiangjiang WANG,Jiaxing CHANG,Malin LIU()
Received:
2020-03-20
Revised:
2020-05-18
Online:
2020-08-05
Published:
2020-08-05
Contact:
Malin LIU
通讯作者:
刘马林
作者简介:
陈昭(1995—),女,博士研究生,基金资助:
CLC Number:
Zhao CHEN, Meng CHEN, Jiangjiang WANG, Jiaxing CHANG, Malin LIU. Sensitive field characteristics and reconstruction algorithm improvement of ECT measurement with filling method in irregular structure[J]. CIESC Journal, 2020, 71(8): 3469-3479.
陈昭, 陈猛, 王江江, 常家兴, 刘马林. 非规则结构电容层析成像填补法测量的敏感场特性及重构算法改进[J]. 化工学报, 2020, 71(8): 3469-3479.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 General schematic diagram of ECT measurement of irregular structure with filling method (a) and instrumentation plan of filling method applied to multi-ring slope-hole fluidized bed inlet (b)
项目 | 内容 |
---|---|
敏感场S | 1:标准敏感场;2:填充区满,测量区空;3:填充区满,测量区满 |
归一化电容矩阵中的CL的选择 | a:填充区空,测量区空;b:填充区满,测量区空 |
图像重构算法 | 甲:LBP;乙:Landweber;丙:Tikhonov;丁:改进1,变换矩阵法;戊:改进2,拆分矩阵法 |
Table 1 Case definition in this study
项目 | 内容 |
---|---|
敏感场S | 1:标准敏感场;2:填充区满,测量区空;3:填充区满,测量区满 |
归一化电容矩阵中的CL的选择 | a:填充区空,测量区空;b:填充区满,测量区空 |
图像重构算法 | 甲:LBP;乙:Landweber;丙:Tikhonov;丁:改进1,变换矩阵法;戊:改进2,拆分矩阵法 |
流型 | 运行时间/s | ||||
---|---|---|---|---|---|
LBP | Landweber | Tikhonov | 变换矩阵 | 拆分矩阵 | |
半管流 | 0.001331 | 0.082503 | 1.271096 | 2.72222 | 0.04930 |
核心流 | 0.001168 | 0.085205 | 1.525173 | 2.65924 | 0.04975 |
环状流 | 0.001076 | 0.117534 | 1.263974 | 2.67614 | 0.05122 |
双管流 | 0.001137 | 0.105980 | 1.345436 | 2.62670 | 0.04871 |
三管流 | 0.001099 | 0.083032 | 1.348390 | 2.64398 | 0.07876 |
Table 2 Running time of each reconstruction algorithm
流型 | 运行时间/s | ||||
---|---|---|---|---|---|
LBP | Landweber | Tikhonov | 变换矩阵 | 拆分矩阵 | |
半管流 | 0.001331 | 0.082503 | 1.271096 | 2.72222 | 0.04930 |
核心流 | 0.001168 | 0.085205 | 1.525173 | 2.65924 | 0.04975 |
环状流 | 0.001076 | 0.117534 | 1.263974 | 2.67614 | 0.05122 |
双管流 | 0.001137 | 0.105980 | 1.345436 | 2.62670 | 0.04871 |
三管流 | 0.001099 | 0.083032 | 1.348390 | 2.64398 | 0.07876 |
1 | Guo Q, Meng S, Wang D, et al. Investigation of gas-solid bubbling fluidized beds using ECT with a modified Tikhonov regularization technique[J]. AIChE Journal, 2017, 64(1): 29-41. |
2 | Mao M X, Ye J M, Wang H G, et al. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography[J]. Measurement Science and Technology, 2016, 27(9): 095401. |
3 | Ge R H, Ye J M, Wang H G, et al. Investigation of gas-solids flow characteristics in a conical fluidized bed dryer by pressure fluctuation and electrical capacitance tomography[J]. Drying Technology, 2016, 34(11): 1359-1372. |
4 | 罗琴, 赵银峰, 叶茂, 等. 电容层析成像在气固流化床测量中的应用[J]. 化工学报, 2014, 65(7): 2504-2512. |
Luo Q, Zhao Y F, Ye M, et al. Application of electrical capacitance tomography for gas-solid fluidized bed measurement[J]. CIESC Journal, 2014, 65(7): 2504-2512. | |
5 | Li Y, Yang W Q, Xie C G, et al. Gas/oil/water flow measurement by electrical capacitance tomography[J]. Measurement Science and Technology, 2013, 24(7): UNSP 074001. |
6 | Wang H G, Qiu G Z, Ye J M, et al. Investigation of the fluidized bed coating process by process tomogrpahy and mathematical modeling[J]. Journal of Engineering Thermophysics, 2015, 36(5): 1015-1018. |
7 | Yang W Q, Ren Z, Takei M, et al. Medical applications of electrical tomography[C]//IEEE International Conference on Imaging Systems and Techniques. Krakow Poland: IEEE, 2018: 368-373. |
8 | Huang K, Meng S H, Guo Q, et al. High-temperature electrical capacitance tomography for gas-solid fluidised beds[J]. Measurement Science and Technology, 2018, 29(10): 104002. |
9 | 陆海峰, 郭晓镭, 陶顺龙, 等. 电容层析成像在煤粉料仓下料中的应用[J]. 化工学报, 2014, 65(2): 422-429. |
Lu H F, Guo X L, Tao S L, et al. Application of electrical capacitance tomography in hopper discharge of pulverized coal[J]. CIESC Journal, 2014, 65(2): 422-429. | |
10 | Che H Q, Ye J M, Tu Q Y, et al. Investigation of coating process in Wurster fluidised bed using electrical capacitance tomography[J]. Chemical Engineering Research & Design, 2018, 132: 1180-1192. |
11 | Yang W Q. Design of electrical capacitance tomography sensors[J]. Measurement Science and Technology, 2010, 21(4): 042001. |
12 | Ye J M, Wang H G, Yang W Q. Image reconstruction for electrical capacitance tomography based on sparse representation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 89-102. |
13 | Ye J M, Li Y, Wang H G, et al. Concentric-annulus electrical capacitance tomography sensors[J]. Measurement Science and Technology, 2013, 24(9): 095403. |
14 | 李伟. 电容层析成像反问题求解与图像融合方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2014. |
Li W. Research on inverse problem solving and image fusion of electrical capacitance tomography[D]. Harbin: Harbin University of Science and Technology, 2014. | |
15 | Peng L H, Mou C H, Yao D Y, et al. Determination of the optimal axial length of the electrode in an electrical capacitance tomography sensor[J]. Flow Measurement and Instrumentation, 2005, 16(2/3): 169-175. |
16 | Sun J T, Yang W Q. Fringe effect of electrical capacitance and resistance tomography sensors[J]. Measurement Science and Technology, 2013, 24(7): 074002. |
17 | 张立峰, 王化祥. 一种新的电容层析成像电极组合激励测量模式[J]. 化工学报, 2012, 63(3): 860-865. |
Zhang L F, Wang H X. A new excitation measurement model of electrical capacitance tomography electrode combination[J]. CIESC Journal, 2012, 63(3): 860-865. | |
18 | Wu M, Ye J M, Wang H G, et al. Evaluation of excitation strategy for a large-scale ECT sensor with internal-external electrodes[J]. IEEE Sensors Journal, 2017, 17(24): 8091-8098. |
19 | 刘马林. 流化床-化学气相沉积技术在先进核燃料制备中的应用进展[J]. 化工进展, 2019, 38(4): 1646-1653. |
Liu M L. Application of fluidized bed chemical vapor deposition in advanced nuclear fuel preparation[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1646-1653. | |
20 | Liu M L, Chen Z, Chen M, et al. Scale-up strategy study of coating furnace for TRISO particle fabrication based on numerical simulations[J]. Nuclear Engineering and Design, 2020, 357: 110413. |
21 | Cui Z Q, Wang Q, Xue Q, et al. A review on image reconstruction algorithms for electrical capacitance/resistance tomography[J]. Sensor Review, 2016, 36(4): 429-445. |
22 | Li Y, Yang W Q. Image reconstruction by nonlinear Landweber iteration for complicated distributions[J]. Measurement Science and Technology, 2008, 19(9): 094014. |
23 | Yang W Q, Peng L H. Image reconstruction algorithms for electrical capacitance tomography[J]. Measurement Science and Technology, 2003, 14(1): 1-13. |
24 | 谢黄骏, 陈虹, 高旭, 等. 应用于低温流体两相流测量的修正电容层析成像线性反演算法[J]. 化工学报, 2019, 70(9): 3320-3328. |
Xie H J, Chen H, Gao X, et al. Linear inversion algorithm of modified electrical capacitance tomography applied to measurement of two phase flow of low temperature fluid[J]. CIESC Journal, 2019, 70(9): 3320-3328. | |
25 | 牟昌华, 彭黎辉, 姚丹亚, 等. 一种基于电势分布的电容成像敏感分布计算方法[J]. 计算物理, 2006, 1 (1): 87-92. |
Mou C H, Peng L H, Yao D Y, et al. A method for calculating sensitivity distribution of capacitance imaging based on potential distribution[J]. Computational Physics, 2006, 1(1): 87-92. | |
26 | Guo Q, Meng S H, Wang D H, et al. Investigation of gas-solid bubbling fluidized beds using ECT with a modified Tikhonov regularization technique[J]. AIChE J., 2018, 64(1): 29-41. |
27 | 马敏, 范广永, 孙颖. 电容成像双共轭梯度图像重建改进算法[J]. 北京航空航天大学学报, 2019, 45(8): 1489-1494. |
Ma M, Fan G Y, Sun Y. An improved algorithm for double conjugate gradient image reconstruction in capacitive imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1489-1494. | |
28 | Lu G, Peng L H, Zhang B, et al. Precondition landweber iteration algorithm for electrical capacitance tomography[J]. Flow Measurement and Instrumentation, 2005, 16(2/3): 163-167. |
29 | Yang W Q, Spink D M, York T A, et al. An image-reconstruction algorithm based on Landwebers iteration method for electrical-capacitance tomography[J]. Measurement Science and Technology, 1999, 10(11): 1065-1069. |
30 | Liu S, Fu L, Yang W Q. Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography[J]. Measurement Science and Technology, 1999, 10(7): 37-39. |
31 | Ramli M F, Tian W B, Yang W Q, et al. Image reconstruction with different sensitivity maps generated with different background[C]//IEEE International Conference on Imaging Systems and Techniques. Chania, Greece: IEEE, 2016: 543-548. |
32 | Tian W B, Sun J T, Ramli M F, et al. Adaptive selection of relaxation factor in Landweber iterative algorithm[J]. IEEE Sensors Journal, 2017, 17(21): 7029-7042. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
[7] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[10] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[11] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[12] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[13] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[14] | Junxian CHEN, Zhongli JI, Yu ZHAO, Qian ZHANG, Yan ZHOU, Meng LIU, Zhen LIU. Study on online detection method of particulate matter in natural gas pipeline based on microwave technology [J]. CIESC Journal, 2023, 74(3): 1042-1053. |
[15] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||