CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3480-3489.DOI: 10.11949/0438-1157.20200165
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Suola SHAO(),Huan ZHANG,Shijun YOU,Wandong ZHENG()
Received:
2020-02-21
Revised:
2020-04-28
Online:
2020-08-05
Published:
2020-08-05
Contact:
Wandong ZHENG
通讯作者:
郑万冬
作者简介:
邵索拉(1993—),女,博士研究生,基金资助:
CLC Number:
Suola SHAO, Huan ZHANG, Shijun YOU, Wandong ZHENG. Performance investigation of air-source heat pump heating system with novel thermal storage refrigerant-heated panel[J]. CIESC Journal, 2020, 71(8): 3480-3489.
邵索拉, 张欢, 由世俊, 郑万冬. 带有蓄热型直接冷凝式加热板的空气源热泵系统性能研究[J]. 化工学报, 2020, 71(8): 3480-3489.
Add to citation manager EndNote|Ris|BibTeX
控制器 | 控制档位 | |||||
---|---|---|---|---|---|---|
低 | 中 | 高 | ||||
压力/bar | 温度/ ℃ | 压力/bar | 温度/ ℃ | 压力/bar | 温度/ ℃ | |
DB91 (低压传感器) | 21 | 34 | 22 | 35 | 23 | 37 |
DB92 (中压传感器) | 24 | 39 | 25 | 41 | 26 | 42.5 |
DB93 (高压传感器) | 28 | 46 | 29 | 47 | 30 | 49 |
Table 1 Condensation pressure and corresponding condensation temperature under three electronic controllers
控制器 | 控制档位 | |||||
---|---|---|---|---|---|---|
低 | 中 | 高 | ||||
压力/bar | 温度/ ℃ | 压力/bar | 温度/ ℃ | 压力/bar | 温度/ ℃ | |
DB91 (低压传感器) | 21 | 34 | 22 | 35 | 23 | 37 |
DB92 (中压传感器) | 24 | 39 | 25 | 41 | 26 | 42.5 |
DB93 (高压传感器) | 28 | 46 | 29 | 47 | 30 | 49 |
设备 | 测量参数 | 量程 | 精度 |
---|---|---|---|
科氏流量计DMF-1-1-A | 流量 | 0 ~ 100 kg/h | 0.2% FS |
压力传感器PT2301-7/16 | 压力 | 0 ~ 45 bar | 0.1% FS |
T型热电偶 | 温度 | -50 ~ 150℃ | ±0.5℃ |
德图Testo | 湿度 | 2% ~ 98% RH | ±2% RH |
电能表DTS253 | 输入功率 | 0.01 ~ 999.99 kW·h | 0.01 kW·h |
Table 2 Information of the measured equipment
设备 | 测量参数 | 量程 | 精度 |
---|---|---|---|
科氏流量计DMF-1-1-A | 流量 | 0 ~ 100 kg/h | 0.2% FS |
压力传感器PT2301-7/16 | 压力 | 0 ~ 45 bar | 0.1% FS |
T型热电偶 | 温度 | -50 ~ 150℃ | ±0.5℃ |
德图Testo | 湿度 | 2% ~ 98% RH | ±2% RH |
电能表DTS253 | 输入功率 | 0.01 ~ 999.99 kW·h | 0.01 kW·h |
测量参数 | 实验最大误差/% |
---|---|
表面温度 (Ts) | ±1.8 |
制冷剂压力 (p) | ±0.19 |
制冷剂流量 (G) | ±0.38 |
供热量 (Qcon) | ±1.68 |
辐射换热量 (Qr) | ±3.82 |
自然对流换热量 (Qnc) | ±2.63 |
系统效率 (COP) | ±2.43 |
Table 3 Uncertainties of direct and indirect measurements
测量参数 | 实验最大误差/% |
---|---|
表面温度 (Ts) | ±1.8 |
制冷剂压力 (p) | ±0.19 |
制冷剂流量 (G) | ±0.38 |
供热量 (Qcon) | ±1.68 |
辐射换热量 (Qr) | ±3.82 |
自然对流换热量 (Qnc) | ±2.63 |
系统效率 (COP) | ±2.43 |
国别 | 居住建筑供热能耗① | 市场价/CNY | 增值税与劳动力成本/CNY | ICC/CNY | ||||||
---|---|---|---|---|---|---|---|---|---|---|
热泵 | 制冷剂 | 铜管 | 相变材料 | 热泵 | 制冷剂 | 铜管 | 相变材料 | |||
美国 | 3.8 (85~94)[ | 1931.3 | 70.4 | 628.6 | 527.9 | 231.8 | 6.9 | 163.5 | 63.5 | 3623.9 |
日本 | 6.6 (147~162)[ | 2526.8 | 138.7 | 1178.5 | 989.5 | 302.9 | 13.8 | 306.4 | 118.7 | 5575.3 |
中国 | 2.6 (58~64)[ | 1544.2 | 55.9 | 628.6 | 527.9 | 185.6 | 5.5 | 163.5 | 63.5 | 3174.7 |
Table 4 ICC of the proposed heating system for residential heating in China, America and Japan (per 20 m2 heating room)
国别 | 居住建筑供热能耗① | 市场价/CNY | 增值税与劳动力成本/CNY | ICC/CNY | ||||||
---|---|---|---|---|---|---|---|---|---|---|
热泵 | 制冷剂 | 铜管 | 相变材料 | 热泵 | 制冷剂 | 铜管 | 相变材料 | |||
美国 | 3.8 (85~94)[ | 1931.3 | 70.4 | 628.6 | 527.9 | 231.8 | 6.9 | 163.5 | 63.5 | 3623.9 |
日本 | 6.6 (147~162)[ | 2526.8 | 138.7 | 1178.5 | 989.5 | 302.9 | 13.8 | 306.4 | 118.7 | 5575.3 |
中国 | 2.6 (58~64)[ | 1544.2 | 55.9 | 628.6 | 527.9 | 185.6 | 5.5 | 163.5 | 63.5 | 3174.7 |
国别 | 参数 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
y/a | r/% | ICC/CNY | CRF/% | SFF/% | FYC/CNY | S/CNY | ASV/CNY | AMC/CNY | ARC/CNY | AC/CNY | |
美国 | 15 | 10 | 3623.9 | 13.1 | 17.5 | 474.7 | 724.8 | 126.8 | 57.0 | 722.7 | 1127.6 |
日本 | 15 | 10 | 5575.3 | 13.1 | 17.5 | 730.4 | 1115.1 | 195.1 | 87.6 | 1561.6 | 2184.5 |
中国 | 15 | 10 | 3174.7 | 13.1 | 17.5 | 415.9 | 634.9 | 111.1 | 49.9 | 156.0 | 510.7 |
Table 5 The annual cost for the ASHP system with RHPs in China, America and Japan (per 20 m2 heating room)
国别 | 参数 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
y/a | r/% | ICC/CNY | CRF/% | SFF/% | FYC/CNY | S/CNY | ASV/CNY | AMC/CNY | ARC/CNY | AC/CNY | |
美国 | 15 | 10 | 3623.9 | 13.1 | 17.5 | 474.7 | 724.8 | 126.8 | 57.0 | 722.7 | 1127.6 |
日本 | 15 | 10 | 5575.3 | 13.1 | 17.5 | 730.4 | 1115.1 | 195.1 | 87.6 | 1561.6 | 2184.5 |
中国 | 15 | 10 | 3174.7 | 13.1 | 17.5 | 415.9 | 634.9 | 111.1 | 49.9 | 156.0 | 510.7 |
文献 | 供热系统 | 地区 | 单位热容 | 利率 | 初投资(ICC) | 运行成本(ARC&AMC) |
---|---|---|---|---|---|---|
[ | 燃煤热电联产 | 中国 | — | — | 410 CNY /m2 (8200 CNY) | 9.1 CNY/m2 (182 CNY) |
壁挂式燃气锅炉供暖 | 中国 | — | — | 230 CNY /m2 (4600 CNY) | 13.2 CNY /m2 (264 CNY) | |
区域燃煤锅炉供暖 | 中国 | — | — | 260 CNY /m2 (5200 CNY) | 12.8 CNY /m2 (256 CNY) | |
[ | 液化石油气加热锅炉 | 罗马尼亚 | 75 kW | — | 53129.6 CNY (1469.7 CNY) | — |
[ | 空气源热泵水系统 | 加拿大 | — | 9% | 每户十年总额30654.5~42538.4 CNY | |
[ | 空气源热泵水系统 | 西班牙 | 8 kW | — | 47508.6~52991.8 CNY (11877.2~13248.0 CNY) | — |
[ | 分体式热泵空调 | 加拿大 | 9.32 kW | — | 16248.7(3486.8 CNY) | — |
Table 6 Comparison of the proposed system with other heating systems in terms of ICC and running cost
文献 | 供热系统 | 地区 | 单位热容 | 利率 | 初投资(ICC) | 运行成本(ARC&AMC) |
---|---|---|---|---|---|---|
[ | 燃煤热电联产 | 中国 | — | — | 410 CNY /m2 (8200 CNY) | 9.1 CNY/m2 (182 CNY) |
壁挂式燃气锅炉供暖 | 中国 | — | — | 230 CNY /m2 (4600 CNY) | 13.2 CNY /m2 (264 CNY) | |
区域燃煤锅炉供暖 | 中国 | — | — | 260 CNY /m2 (5200 CNY) | 12.8 CNY /m2 (256 CNY) | |
[ | 液化石油气加热锅炉 | 罗马尼亚 | 75 kW | — | 53129.6 CNY (1469.7 CNY) | — |
[ | 空气源热泵水系统 | 加拿大 | — | 9% | 每户十年总额30654.5~42538.4 CNY | |
[ | 空气源热泵水系统 | 西班牙 | 8 kW | — | 47508.6~52991.8 CNY (11877.2~13248.0 CNY) | — |
[ | 分体式热泵空调 | 加拿大 | 9.32 kW | — | 16248.7(3486.8 CNY) | — |
1 | Torekov M S, Bahnsenb N, Qvale B. The relative competitive positions of the alternative means for domestic heating[J]. Energy, 2007, 32(5): 627-633. |
2 | 饶荣水, 谷波, 周泽, 等. 寒冷地区用空气源热泵技术进展[J]. 建筑热能通风空调, 2005, 24(4): 27-31. |
Rao R S, Gu B, Zhou Z, et al. Development of air source heat pump for cold regions[J]. Building Energy & Environment, 2005, 24(4): 27-31. | |
3 | 曾璟. 夏热冬冷地区蓄能型空气源热泵地板供暖系统的实验研究[D]. 长沙: 湖南大学, 2016. |
Zeng J. Experiments and analysis of the sensible heat storage air source heat pump for residential heating in hot summer and cold winter zone[D]. Changsha: Hunan University, 2016. | |
4 | Han B L, Yan G, Yu J L. Refrigerant migration during startup of a split air conditioner in heating mode[J]. Applied Thermal Engineering, 2019, 148(2): 1068-1073. |
5 | Huang C, Li R B, Liu Y, et al. Study of indoor thermal environment and stratified air-conditioning load with low-sidewall air supply for large space based on Block-Gebhart model[J]. Building and Environment, 2019, 147(1): 495-505. |
6 | Hu B, Wang R Z, Xiao B, et al. Performance evaluation of different heating terminals used in air source heat pump system[J]. International Journal of Refrigeration, 2018, 98(2): 274-282. |
7 | Asaee S R, Ugursal V I, Beausoleil-Morrison I. Techno-economic feasibility evaluation of air to water heat pump retrofit in the Canadian housing stock[J]. Applied Thermal Engineering, 2017, 111(1): 936-947. |
8 | Lee S, Park B, Kim J, et al. Evaluation of thermal characteristics on a multi-sheet-type radiant panel heating system[J]. Journal of Building Engineering, 2016, 8(12): 48-57. |
9 | Werner-Juszczuk A J. Experimental and numerical investigation of lightweight floor heating with metallised polyethylene radiant sheet[J]. Energy and Buildings, 2018, 177(10): 23-32. |
10 | 于涛, 乔春珍, 赵玉清. 空气源热泵+散热器低温采暖在北京农村地区应用的综合性分析[J]. 节能, 2014, 387(12): 51-54. |
Yu T, Qiao C Z, Zhao Y Q. Comprehensive analysis of low temperature space heating system with air source heat pump and radiators in rural areas in Beijing[J]. Energy Conservation, 2014, 387(12): 51-54. | |
11 | Xu S X, Ding R C, Niu J H, et al. Investigation of air-source heat pump using heat pipes as heat radiator[J]. International Journal of Refrigeration, 2018, 90(6): 91-98. |
12 | Dong J K, Zhang L, Deng S M, et al. An experimental study on a novel radiant-convective heating system based on air source heat pump[J]. Energy and Buildings, 2018, 158(1): 812-821. |
13 | 方修睦. 建筑环境测试技术[M]. 北京:中国建筑工业出版社, 2002: 20. |
Fang X M. Building Environment Testing Technology[M]. Beijing: China Architecture & Building Press, 2002: 20. | |
14 | Churchill S W, Chu H H S. Correlating equations for laminar and turbulent free convection from a vertical plate[J]. International Journal of Heat and Mass Transfer, 1975, 18(2): 1323-1329. |
15 | Laouadi A. Development of a radiant heating and cooling model for building energy simulation software[J]. Building and Environment, 2004, 39(4): 421-431. |
16 | Yu G Q, Yao Y P. The experimental research on the heating and cooling performance of light floor radiant panels[J]. Procedia Engineering, 2015, 121: 1349-1355. |
17 | Dong J K, Deng S M, Jiang Y Q, et al. An experimental study on defrosting heat supplies and energy consumptions during a reverse cycle defrost operation for an air source heat pump[J]. Applied Thermal Engineering, 2012, 37(5): 380-387. |
18 | Shao S L, Zhang H, You S J, et al. Thermal performance analysis of a new refrigerant-heated radiator coupled with air-source heat pump heating system[J]. Applied Energy, 2019, 247(32): 78-88. |
19 | Mateu-Royoa C, Navarro-Esbría J, Mota-Babilonia A, et al. Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery[J]. Applied Energy, 2019, 253(11): 113504. |
20 | 曾章传. 空气源热泵直接地板辐射采暖能效及地板传热研究[D]. 郑州: 郑州大学, 2010. |
Zeng Z C. Thermodynamics analysis and heat transfer research of direct radiant floor heating system with ASHP[D]. Zhengzhou: Zhengzhou University, 2010. | |
21 | British Standards Institution. Radiators and Convectors. Part 2: Test Methods and Rating: BS EN 442-2:2014[S]. London: BSI Standards, 2014. |
22 | Yao Y, Jiang Y, Deng S, et al. A study on the performance of the airside heat exchanger under frosting in an air source heat pump water heater/chiller unit[J]. International Journal of Heat and Mass Transfer, 2004, 47(17/18): 3745-3756. |
23 | The US Department of Energy. 2011 Building Energy Databook[M]. US: D & R International, Ltd., 2012: 68-113. |
24 | Ivar B, Toshihiko N. A comparative exergy and exergoeconomic analysis of a residential heat supply system paradigm of Japan and local source based district heating system using SPECO (specific exergy cost) method[J]. Energy, 2014, 74(1): 537-554. |
25 | 清华大学建筑节能研究中心. 建筑能耗模拟及eQUEST & DeST操作教程[M]. 北京: 中国建筑工业出版社, 2014: 268. |
Tsinghua University Building Energy Conservation Research Center. Building Energy Simulation and Operating Tutorial of eQUEST & DeST[M]. Beijing: China Architecture & Building Press, 2014: 268. | |
26 | 中华人民共和国建设部. 城市热力网设计规范: CJJ 34—2002[S]. 北京: 中国标准出版社, 2002. |
Ministry of Construction of the Peoples Republic of China. Design code of district heating network: CJJ 34—2002[S]. Beijing: Standards Press of China, 2002. | |
27 | Zhang Y, Zhu C G, Zhang H, et al. Experimental study of a humidification-dehumidification desalination system with heat pump unit[J]. Desalination, 2018, 442(15): 108-117. |
28 | Junghans L. Evaluation of the economic and environmental feasibility of heat pump systems in residential buildings, with varying qualities of the building envelope[J]. Renewable Energy, 2015, 76(4): 699-705. |
29 | Wang Q K, Hu Z Y, Li Q H. Chinas power tariff in the perspective of international comparison[J]. Electric Power Technologic Economics, 2009, 21: 27-34. |
30 | International Energy Agency. Energy prices & taxes[R]. Paris: IEA, 2009. |
31 | Zhang Q, Zhang L, Nie J, et al. Techno-economic analysis of air source heat pump applied for space heating in northern China[J]. Applied Energy, 2017, 207(1): 533-542. |
32 | Popa V, Ion I, Popa C L. Thermo-economic analysis of an air-to-water heat pump[J]. Energy Procedia, 2016, 85(1): 408–415. |
33 | Masip X, Cazorla-Marín A, Montagud-Montalvá C, et al. Energy and techno-economic assessment of the effect of the coupling between an air source heat pump and the storage tank for sanitary hot water production[J]. Applied Thermal Engineering, 2019, 159(8): 113853. |
34 | Hakkaki-Fard A, Eslami-Nejad P, Aidoun Z, et al. A techno-economic comparison of a direct expansion ground-source and an air-source heat pump system in Canadian cold climates[J]. Energy, 2015, 87(1): 49-59. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[15] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||