CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3699-3709.DOI: 10.11949/0438-1157.20191466
• Energy and environmental engineering • Previous Articles Next Articles
Binfan JIANG1,2(),Dehong XIA1,2(),Keke AN1,Peikun ZHANG1,Wenqing AO3
Received:
2019-12-03
Revised:
2020-05-14
Online:
2020-08-05
Published:
2020-08-05
Contact:
Dehong XIA
蒋滨繁1,2(),夏德宏1,2(),安苛苛1,张培昆1,敖雯青3
通讯作者:
夏德宏
作者简介:
蒋滨繁(1994—),女,博士研究生,基金资助:
CLC Number:
Binfan JIANG, Dehong XIA, Keke AN, Peikun ZHANG, Wenqing AO. Efficient low-carbon dolomite calcination process based on CO2 looping and recovering[J]. CIESC Journal, 2020, 71(8): 3699-3709.
蒋滨繁, 夏德宏, 安苛苛, 张培昆, 敖雯青. 基于CO2循环的低碳高效白云石煅烧新工艺[J]. 化工学报, 2020, 71(8): 3699-3709.
Add to citation manager EndNote|Ris|BibTeX
Chemical | ΔG? (298 K) / (kJ/mol) | ΔH? (298 K) /(kJ/mol) | ΔS? (298 K) / (J/(mol K)) |
---|---|---|---|
CaCO3 | -1128.8 | -1206.9 | 92.9 |
CaO | -604.2 | -635.1 | 39.7 |
MgCO3 | -1012 | -1096 | 65.7 |
MgO | -569.4 | -601.7 | 26.9 |
CO2 | -394.4 | -393.5 | 213.6 |
Table 1 Calculation parameters for thermochemical analysis of CaCO3·MgCO3 decomposition
Chemical | ΔG? (298 K) / (kJ/mol) | ΔH? (298 K) /(kJ/mol) | ΔS? (298 K) / (J/(mol K)) |
---|---|---|---|
CaCO3 | -1128.8 | -1206.9 | 92.9 |
CaO | -604.2 | -635.1 | 39.7 |
MgCO3 | -1012 | -1096 | 65.7 |
MgO | -569.4 | -601.7 | 26.9 |
CO2 | -394.4 | -393.5 | 213.6 |
参数 | 数值 |
---|---|
2700 | |
ρCaO/MgO/(kg/m3) | 3000 |
2 | |
1.16 | |
λCaO/MgO /(W/(m·K) ) | 1.2 |
0.014 | |
0.8~1.3 | |
1.0~1.2 | |
5×10-5 | |
Ts / K | 300 |
Tg / K | 1600 |
vg /(m/s) | 2 |
r/m | 0.03 |
Pr | 0.724 |
Table 2 Calculation parameters for kinetic analysis of CaCO3·MgCO3 decomposition
参数 | 数值 |
---|---|
2700 | |
ρCaO/MgO/(kg/m3) | 3000 |
2 | |
1.16 | |
λCaO/MgO /(W/(m·K) ) | 1.2 |
0.014 | |
0.8~1.3 | |
1.0~1.2 | |
5×10-5 | |
Ts / K | 300 |
Tg / K | 1600 |
vg /(m/s) | 2 |
r/m | 0.03 |
Pr | 0.724 |
区域 | 收入项 | 支出项 | ||
---|---|---|---|---|
参数 | 值 | 参数 | 值 | |
预热段 | 白云石质量流量 qb /(kg/h) | 5000 | 白云石质量流量 qb/(kg/h) | 5000 |
CO2质量流量 qc,3/(kg/h) | 18400 | CO2质量流量 qc,3/(kg/h) | 18400 | |
入口白云石温度 Tb,yin/K | 300 | 出口白云石温度 Tb,yout/K | 900~1000 | |
入口CO2温度 Tc,yin/K | 900~1000 | 出口CO2温度 Tc,yout /K | 500 | |
白云石显热上升 Qb/(kJ/s) | 750 | |||
煅烧段 | 白云石质量流量 qb /(kg/h) | 5000 | 煅白质量流量 qdb/(kg/h) | 2600 |
CO2质量流量 qc,1 /(kg/h) | 16000 | CO2质量流量 qc,3/(kg/h) | 18400 | |
入口白云石温度 Tb,din /K | 900 | 出口煅白温度 Tb,dout /K | 900~1000 | |
入口CO2温度 Tc,din/K | 1400~1600 | 出口CO2温度 Tc,dout /K | 900~1000 | |
白云石反应热 Qb,r/(kJ/s) | 2050 | 白云石分解产生CO2qc,2 /(kg/h) | 2400 | |
冷却段 | 煅白质量流量 qdb/(kg/h) | 2600 | 煅白质量流量 qdb/(kg/h) | 2600 |
CO2质量流量 qc,1/(kg/h) | 16000 | CO2质量流量 qc,2 /(kg/h) | 16000 | |
入口煅白温度 Tb,lin /K | 900~1000 | 出口煅白温度 Tb,lout /K | 500 | |
入口CO2温度 Tc,lin /K | 400 | 出口CO2温度 Tc,lout /K | 600 | |
蓄热式加热炉 | CO2质量流量 qc,1 /(kg/h) | 16000 | CO2质量流量 qc,1/(kg/h) | 16000 |
入口CO2温度 Tc,xin /K | 600 | 出口CO2温度 Tc,xout /K | 1400~1600 | |
燃料消耗/(kg ce/(t 煅白)) | 140 | 燃烧产生和排放的CO2 /(kg/h) | 980 |
Table 3 Thermal analysis of dolomite calcination system with CO2 looping and recovering (steady state)
区域 | 收入项 | 支出项 | ||
---|---|---|---|---|
参数 | 值 | 参数 | 值 | |
预热段 | 白云石质量流量 qb /(kg/h) | 5000 | 白云石质量流量 qb/(kg/h) | 5000 |
CO2质量流量 qc,3/(kg/h) | 18400 | CO2质量流量 qc,3/(kg/h) | 18400 | |
入口白云石温度 Tb,yin/K | 300 | 出口白云石温度 Tb,yout/K | 900~1000 | |
入口CO2温度 Tc,yin/K | 900~1000 | 出口CO2温度 Tc,yout /K | 500 | |
白云石显热上升 Qb/(kJ/s) | 750 | |||
煅烧段 | 白云石质量流量 qb /(kg/h) | 5000 | 煅白质量流量 qdb/(kg/h) | 2600 |
CO2质量流量 qc,1 /(kg/h) | 16000 | CO2质量流量 qc,3/(kg/h) | 18400 | |
入口白云石温度 Tb,din /K | 900 | 出口煅白温度 Tb,dout /K | 900~1000 | |
入口CO2温度 Tc,din/K | 1400~1600 | 出口CO2温度 Tc,dout /K | 900~1000 | |
白云石反应热 Qb,r/(kJ/s) | 2050 | 白云石分解产生CO2qc,2 /(kg/h) | 2400 | |
冷却段 | 煅白质量流量 qdb/(kg/h) | 2600 | 煅白质量流量 qdb/(kg/h) | 2600 |
CO2质量流量 qc,1/(kg/h) | 16000 | CO2质量流量 qc,2 /(kg/h) | 16000 | |
入口煅白温度 Tb,lin /K | 900~1000 | 出口煅白温度 Tb,lout /K | 500 | |
入口CO2温度 Tc,lin /K | 400 | 出口CO2温度 Tc,lout /K | 600 | |
蓄热式加热炉 | CO2质量流量 qc,1 /(kg/h) | 16000 | CO2质量流量 qc,1/(kg/h) | 16000 |
入口CO2温度 Tc,xin /K | 600 | 出口CO2温度 Tc,xout /K | 1400~1600 | |
燃料消耗/(kg ce/(t 煅白)) | 140 | 燃烧产生和排放的CO2 /(kg/h) | 980 |
1 | 狄跃忠, 王智慧, 王耀武, 等. 新法铝热炼镁还原渣提取高白氢氧化铝[J]. 化工学报, 2013, 64(3): 1106-1111. |
Di Y Z, Wang Z H, Wang Y W, et al. Extract of high-whiteness aluminum hydroxide from residues of novel process of magnesium production by aluminothermic reduction[J]. CIESC Journal, 2013, 64(3): 1106-1111. | |
2 | 中国有色金属工业协会. 中国有色金属工业年鉴2018[M]. 北京: 中国有色金属协会, 2019. |
China Nonferrous Metals Industry Association. The Yearbook of Nonferrous Metals Industry of China2018[M]. Beijing: China Nonferrous Metals Industry Association, 2018. | |
3 | Li R, Zhang S, Guo L, et al. Numerical study of magnesium (Mg) production by the Pidgeon process: impact of heat transfer on Mg reduction process[J]. International Journal of Heat and Mass Transfer, 2013, 59: 328-337. |
4 | 夏德宏, 余涛. 皮江法炼镁工艺用能状况诊断及节能措施[J]. 工业炉, 2005, 27(2): 32-35. |
Xia D H, Yu T. Diagnosis on energy consumption and energy-saving measures for Pidgeons magnesium reduction process[J]. Industrial Furnace, 2005, 27(2): 32-35. | |
5 | Pidgeon L M, Alexander W A. Thermal production of magnesiums pilot plant studies on the retort ferrosilicon process[J]. Trans. Am. Inst. Min. Mater. Eng. , 1944, 159: 315-352. |
6 | Zang J, Ding W. The Pidgeon Process in China and Its Future[M]. Hryn J. New Orleans: Magnesium Technology, TMS (The Minerals, Metals & Materials Society), 2001: 7-10. |
7 | Peters G P, Marland G, Quéré C L, et al. Rapid growth in CO2 emissions after the 2008—2009 global financial crisis[J]. Nature Climate Change, 2010, 2: 2-4. |
8 | Wang W, Wang S, Ma X, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703. |
9 | Brown R.Magnesium in the 21st century[J]. Adv. Mater. Processes, 2009, 167(1): 31-33. |
10 | Halmann M, Frei A, Steinfeld A. Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: thermodynamic and environmental analyses[J]. Industrial & Engineering Chemistry Research, 2008, 47: 2146-2154. |
11 | Maitra S, Choudhury A, Das H S, et al. Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition[J]. Journal of Materials Science, 2005, 18(40): 4749-4751. |
12 | 陈文仲, 王春华, 刘宝玉, 等. 回转窑供风管参数对窑内热工状况的影响[J]. 化工学报, 2011, 62(11): 3109-3114. |
Chen W Z, Wang C H, Liu B Y, et al. Influences of air pipe parameters on thermal working conditions in carbon rotary kilns[J]. CIESC Journal, 2011, 62(11): 3109-3114. | |
13 | 张志霄, 池涌, 李水清, 等. 回转窑传热模型与数值模拟[J]. 化学工程, 2003, 31(4): 27-31. |
Zhang Z X, Chi Y, Li S Q, et al. Axial heat-transfer model and numerical simulation for rotary kiln[J]. Chemical Engineering (China), 2003, 31(4): 27-31. | |
14 | 徐祥斌, 罗序燕, 曹慧君, 等. 硅热法炼镁白云石煅烧节能技术研究及最新进展[J]. 轻金属, 2010, 9: 55-59. |
Xu X B, Luo X Y, Cao H J, et al. The research and the latest evolution of saving energy in the dolomite calcination of silicon thermal process[J]. Light Metals, 2010, 9: 55-59. | |
15 | 殷谦, 杜文静, 纪兴林, 等. 一种回转窑余热回收用集热器的实验研究及其结构优化[J]. 化工学报, 2016, 67(7): 2740-2747. |
Yin Q, Du W J, Ji X L, et al. Experimental measurement and structure optimization of heat recovery exchangers on rotary kilns[J]. CIESC Journal, 2016, 67(7): 2740-2747. | |
16 | Yin Q, Du W J, Ji X L, et al. Optimization design and economic analyses of heat recovery exchangers on rotary kilns[J]. Applied Energy, 2016, 180: 743-756. |
17 | Söğüt Z, Oktay Z, Karakoç H. Mathematical modeling of heat recovery from a rotary kiln[J]. Applied Thermal Engineering, 2010, 30(8): 817-825. |
18 | Luo Q, Li P, Cai L, et al. A thermoelectric waste-heat-recovery system for portland cement rotary kilns[J]. Journal of Electronic Materials, 2015, 44(6): 1750-1762. |
19 | Senegačnik A, Oman J, Širok B. Analysis of calcination parameters and the temperature profile in an annular shaft kiln (Ⅰ): Theoretical survey[J]. Applied Thermal Engineering, 2007, 27(8/9): 1467-1472. |
20 | Senegačnik A, Oman J, Širok B. Annular shaft kiln for lime burning with kiln gas recirculation[J]. Applied Thermal Engineering, 2008, 28(7): 785-792. |
21 | Zuideveld P L, Berg P J V D. Design of lime shaft kilns[J]. Chemical Engineering Science, 1971, 26(6): 875-883. |
22 | Gutiérreza A, Cogollos M J B, Vandecasteeleb C. Energy and exergy assessments of a lime shaft kiln[J]. Applied Thermal Engineering, 2013, 51(1/2): 273-280. |
23 | Piringer H. Lime shaft kilns[J]. Energy Procedia, 2017, 120: 75-95. |
24 | Krause B, Liedmann B, Wiese J, et al. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln[J]. International Journal of Thermal Sciences, 2017, 117: 121-135. |
25 | 任玲, 夏德宏, 赵恒, 镁冶金白云石煅烧振荡式均匀加热U型窑的开发[J]. 中国有色冶金, 2010, 41(2): 51-55. |
Ren L, Xia D H, Zhao H. Development of U-shaped calcining kiln with oscillating and uniform heating for dolomite calcination in magnesium metallurgy[J]. China Nonferrous Metallurgy, 2010, 41(2): 51-55. | |
26 | Sasaki K, Qiu X, Hosomomi Y, et al. Effect of natural dolomite calcination temperature on sorption of borate onto calcined products[J]. Microporous and Mesoporous Materials, 2013, 171: 1-8. |
27 | Knndsen M. The laws of molecular and viscous flow of gases through tribes[J]. Annual Physics, 1909, 28: 75 |
28 | Jiang B, Xia D, Yu B, et al. An environment-friendly process for limestone calcination with CO2 looping and recovery[J]. Journal of Cleaner Production, 2019, 240: 118147. |
29 | Darroudi T, Searcy A W. Effect of carbon dioxide pressure on the rate of decomposition of calcite (CaCO3)[J]. Journal of Physical Chemistry, 2013, 85: 124-131. |
30 | Borgwardt R H. Sintering of nascent calciumoxide[J]. Chemical Engineering Science, 1989, 44: 53-63. |
31 | Barin I. Thermochemical Data of Pure Substances [M]. 3rd ed. Weinheim (VCH): Verlagsgesellschaft mbH, 2008. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[5] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[6] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[11] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[14] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[15] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||