CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 204-211.DOI: 10.11949/0438-1157.20191223
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Weiwei CHEN1(),Xiande FANG2,Shihua LU1,Fujian LIN1,Ye ZHANG1
Received:
2019-10-23
Revised:
2019-11-27
Online:
2020-04-25
Published:
2020-04-25
Contact:
Weiwei CHEN
通讯作者:
陈玮玮
作者简介:
陈玮玮(1985—),男,博士,讲师,基金资助:
CLC Number:
Weiwei CHEN, Xiande FANG, Shihua LU, Fujian LIN, Ye ZHANG. Parameter design of aircraft fuel regeneration cooling thermal management system[J]. CIESC Journal, 2020, 71(S1): 204-211.
陈玮玮, 方贤德, 鹿世化, 林福建, 张烨. 飞行器燃料再生冷却热管理系统参数设计[J]. 化工学报, 2020, 71(S1): 204-211.
Add to citation manager EndNote|Ris|BibTeX
热管理 子系统 | 载热 介质 | 入口压力/ MPa | 入口温度/ K | 入口流量/ (kg·s-1) | 热载荷/ kW | 煤油 换热器 | 水力直径/ m | 压力降/ MPa | 流程数 |
---|---|---|---|---|---|---|---|---|---|
浸液冷却 | 甲醇 | 0.1 | 323 | 0.246 | 10 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.04 | 0.005 | 2 | ||||||
喷雾冷却 | FC-72 | 0.1 | 313 | 0.422 | 8 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.04 | 0.005 | 2 | ||||||
座舱 | 空气 | 0.1 | 310 | 0.498 | 5 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.04 | 0.005 | 2 | ||||||
设备舱 | 无载热介质,壁温上限340 K | 6 | 冷边 | 0.02 | 0.01 | 1 | |||
齿轮箱 | PAO | 0.1 | 318 | 0.251 | 8.5 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.02 | 0.005 | 2 | ||||||
液压设备 | 液压油 | 0.1 | 320 | 0.245 | 13 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.02 | 0.005 | 2 | ||||||
发动机 | 无载热介质,壁温上限850 K | 200 | 冷边 | 0.1 | 0.01 | 1 |
Table 1 Design parameters of integrated thermal management system
热管理 子系统 | 载热 介质 | 入口压力/ MPa | 入口温度/ K | 入口流量/ (kg·s-1) | 热载荷/ kW | 煤油 换热器 | 水力直径/ m | 压力降/ MPa | 流程数 |
---|---|---|---|---|---|---|---|---|---|
浸液冷却 | 甲醇 | 0.1 | 323 | 0.246 | 10 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.04 | 0.005 | 2 | ||||||
喷雾冷却 | FC-72 | 0.1 | 313 | 0.422 | 8 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.04 | 0.005 | 2 | ||||||
座舱 | 空气 | 0.1 | 310 | 0.498 | 5 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.04 | 0.005 | 2 | ||||||
设备舱 | 无载热介质,壁温上限340 K | 6 | 冷边 | 0.02 | 0.01 | 1 | |||
齿轮箱 | PAO | 0.1 | 318 | 0.251 | 8.5 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.02 | 0.005 | 2 | ||||||
液压设备 | 液压油 | 0.1 | 320 | 0.245 | 13 | 冷边 | 0.03 | 0.01 | 1 |
热边 | 0.02 | 0.005 | 2 | ||||||
发动机 | 无载热介质,壁温上限850 K | 200 | 冷边 | 0.1 | 0.01 | 1 |
热管理子系统 | 载热介质 | 冷却介质 | 换热面积/ m2 | 换热 效率 | |||||
---|---|---|---|---|---|---|---|---|---|
压力/MPa | 温度/K | 流量/(kg·s-1) | 压力/MPa | 温度/K | 流量/(kg·s-1) | ||||
燃料罐 | 出口 | 无载热介质 | 5.0 | 300 | 0.6 | 无 | 无 | ||
浸液冷却 | 进口 | 0.1 | 323 | 0.246 | 5.0 | 300 | 0.1 | 0.4329 | 0.766 |
出口 | 0.1 | 338 | 0.246 | 4.99 | 329.1 | 0.1 | |||
喷雾冷却 | 进口 | 0.1 | 313 | 0.422 | 5.0 | 300 | 0.1 | 0.7276 | 0.759 |
出口 | 0.1 | 331 | 0.422 | 4.99 | 323.5 | 0.1 | |||
座舱 | 进口 | 0.1 | 310 | 0.498 | 5.0 | 300 | 0.1 | 0.3319 | 0.747 |
出口 | 0.1 | 320 | 0.498 | 4.99 | 314.9 | 0.1 | |||
设备舱 | 进口 | 无载热介质 | 5.0 | 300 | 0.1 | 0.0671 | 无 | ||
出口 | 4.99 | 317.8 | 0.1 | ||||||
齿轮箱 | 进口 | 0.1 | 318 | 0.251 | 5.0 | 300 | 0.1 | 0.5396 | 0.756 |
出口 | 0.1 | 333 | 0.251 | 4.99 | 324.9 | 0.1 | |||
液压设备 | 进口 | 0.1 | 320 | 0.245 | 5.0 | 300 | 0.1 | 0.7970 | 0.776 |
出口 | 0.1 | 348 | 0.245 | 4.99 | 337.4 | 0.1 | |||
发动机 | 进口 | 无载热介质 | 4.99 | 324.6 | 0.6 | 0.0945 | 无 | ||
出口 | 4.98 | 408.7 | 0.6 |
Table 2 Design results of integrated thermal management system
热管理子系统 | 载热介质 | 冷却介质 | 换热面积/ m2 | 换热 效率 | |||||
---|---|---|---|---|---|---|---|---|---|
压力/MPa | 温度/K | 流量/(kg·s-1) | 压力/MPa | 温度/K | 流量/(kg·s-1) | ||||
燃料罐 | 出口 | 无载热介质 | 5.0 | 300 | 0.6 | 无 | 无 | ||
浸液冷却 | 进口 | 0.1 | 323 | 0.246 | 5.0 | 300 | 0.1 | 0.4329 | 0.766 |
出口 | 0.1 | 338 | 0.246 | 4.99 | 329.1 | 0.1 | |||
喷雾冷却 | 进口 | 0.1 | 313 | 0.422 | 5.0 | 300 | 0.1 | 0.7276 | 0.759 |
出口 | 0.1 | 331 | 0.422 | 4.99 | 323.5 | 0.1 | |||
座舱 | 进口 | 0.1 | 310 | 0.498 | 5.0 | 300 | 0.1 | 0.3319 | 0.747 |
出口 | 0.1 | 320 | 0.498 | 4.99 | 314.9 | 0.1 | |||
设备舱 | 进口 | 无载热介质 | 5.0 | 300 | 0.1 | 0.0671 | 无 | ||
出口 | 4.99 | 317.8 | 0.1 | ||||||
齿轮箱 | 进口 | 0.1 | 318 | 0.251 | 5.0 | 300 | 0.1 | 0.5396 | 0.756 |
出口 | 0.1 | 333 | 0.251 | 4.99 | 324.9 | 0.1 | |||
液压设备 | 进口 | 0.1 | 320 | 0.245 | 5.0 | 300 | 0.1 | 0.7970 | 0.776 |
出口 | 0.1 | 348 | 0.245 | 4.99 | 337.4 | 0.1 | |||
发动机 | 进口 | 无载热介质 | 4.99 | 324.6 | 0.6 | 0.0945 | 无 | ||
出口 | 4.98 | 408.7 | 0.6 |
1 | Moses P L, Rausch V L, Nguyen L T, et al. NASA hypersonic flight demonstrators — overview, status, and future plans [J]. Acta Astronautica, 2004, 55(3): 619-630. |
2 | 沈剑, 王伟. 国外高超声速飞行器研制计划[J]. 飞航导弹, 2006, (8): 1-9. |
Shen J, Wang W. Development plan of hypersonic vehicle abroad [J]. Aerodynamic Missile Journal, 2006, (8): 1-9. | |
3 | 陈梅洁, 程珙, 田枫林, 等. 高超声速飞行器流-热-固耦合数值模拟[J]. 化工学报, 2015, 66: 89-94. |
Chen M J, Cheng G, Tian F L, et al. Hypersonic vehicle flow-heat-solid coupling simulation [J]. CIESC Journal, 2015, 66: 89-94. | |
4 | Wang J, Ran Z. Terminal guidance for a hypersonic vehicle with impact time control [J]. Journal of Guidance Control & Dynamics, 2018, 41(8):1790-1798. |
5 | Hu Q, Yao M, Wang C, et al. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities [J]. Aerospace Science & Technology, 2018, 73: 289-299. |
6 | Edwards T. Aviation fuel development – past highlights and future prospects [C]// Proceedings of AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Dayton, Ohio, USA, 2003. |
7 | Hou Y Z, Zheng J L, Dong W. Transient test of aerodynamic heating for hypersonic vehicle [J]. Journal of Aerospace Power, 2010, 25(2): 343-347. |
8 | Lu H, Liu W. Numerical simulation in influence of forward-facing cavity on aerodynamic heating of hypersonic vehicle [J]. Procedia Engineering, 2012, 29(4): 4096-4100. |
9 | Mifsud M, Estruch-Samper D, Macmanus D, et al. A case study on the aerodynamic heating of a hypersonic vehicle [J]. Aeronautical Journal, 2012, 116(1183): 873-893. |
10 | Fujii K, Watanabe S, Kurotaki T, et al. Aerodynamic heating measurements on nose and elevon of hypersonic flight experiment vehicle [J]. Journal of Spacecraft & Rockets, 2015, 38(1): 8-14. |
11 | 郭永胜, 张玲玲, 魏会, 等. 改善吸热型碳氢燃料热管理能力的研究进展[J]. 石油学报(石油加工), 2011, 27(5): 822-828. |
Guo Y S, Zhang L L, Wei H, et al. Research progress in improvement of thermal management capacities of endothermic hydrocarbon fuels [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(5): 822-828. | |
12 | 耿宸, 郭亚军, 冯松, 等. 随机温度信号互相关法测量吸热型碳氢燃料密度[J]. 化工学报, 2019, 70(1): 24-31. |
Geng C, Guo Y J, Feng S, et al. Density measurements of endothermic hydrocarbon fuel using random temperature signal cross-correlation [J]. CIESC Journal, 2019, 70(1): 24-31. | |
13 | 严俊杰, 祝银海, 芦泽龙, 等. 超临界压力碳氢燃料瞬态加热响应特性[J]. 化工学报, 2015, 66: 65-70. |
Yan J J, Zhu Y H, Lu Z L, et al. Transient response of supercritical pressure hydrocarbon fuels during heating condition [J]. CIESC Journal, 2015, 66: 65-70. | |
14 | Leylegian J, Chinitz W. Investigation of short contact time reactors for regeneratively-cooled hypersonic vehicles [J]. Journal of Propulsion & Power, 2012, 28(2): 412-422. |
15 | Zhu Y, Wei P, Xu R, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles [J]. Chinese Journal of Aeronautics, 2018, 31(10): 4-28. |
16 | Lander H, Nixon A C. Endothermic fuels for hypersonic vehicles [J]. Journal of Aircraft, 1971, 8(4): 200-207. |
17 | Huang H, Sobel D R, Spadaccini L J. Endothermic heat-sink of hydrocarbon fuels for scramjet cooling [C]// Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, Indiana, USA, 2002. |
18 | Huang H, Spadaccini L J, Sobel D R. Fuel-cooled thermal management for advanced aeroengines [J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(2): 284-293. |
19 | 陈玮玮, 方贤德. 超临界压力下航空煤油RP-3竖直管内传热关系式评价[C]//工程热物理学会多相流学术会议暨国家自然科学基金进展交流会论文集. 南京, 2015: 156072. |
Chen W W, Fang X D. Evaluation of heat transfer correlations of aviation kerosene RP-3 under supercritical pressure in vertical tubes [C]// Proceedings of the Multiphase Flow and the Progress of the National Natural Science Foundation of Engineering Thermal Physics Society. Nanjing, 2015: 156072. | |
20 | Chen W, Fang X. Modeling of convective heat transfer of RP-3 aviation kerosene in vertical miniature tubes under supercritical pressure [J]. International Journal of Heat and Mass Transfer, 2016, 95: 272-277. |
21 | 孙星, 徐可可, 孟华. 超临界压力正癸烷在螺旋管中传热与裂解吸热现象的数值模拟[J]. 化工学报, 2018, 69: 20-25. |
Sun X, Xu K K, Meng H. Supercritical-pressure heat transfer of n-decane with fuel pyrolysis in helical tube [J]. CIESC Journal, 2018, 69: 20-25. | |
22 | 王彦红, 李素芬, 赵星海. 超临界压力下航空煤油传热恶化的分析与预测[J]. 化工学报, 2018, 69(12): 5056-5064. |
Wang Y H, LI S F, Zhao X H. Analysis and prediction of heat transfer deterioration of aviation kerosene under supercritical pressures [J]. CIESC Journal, 2018, 69(12): 5056-5064. | |
23 | 胡志宏, 陈听宽, 罗毓珊, 等. 高热流条件下超临界压力煤油流过小直径管的传热特性[J]. 化工学报, 2002, 53(2): 134-138. |
Hu Z H, Chen T K, Luo Y S, et al. Heat transfer to kerosene at supercritical pressure in small-diameter tube with large heat flux [J]. Journal of Chemical Industry and Engineering (China), 2002, 53(2): 134-138. | |
24 | Tao Z, Cheng Z, Zhu J, et al. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure [J]. Chinese Journal of Aeronautics, 2016, 29(5): 1247-1261. |
25 | Fu Y, Jie W, Zhi T, et al. Experimental research on convective heat transfer of supercritical hydrocarbon fuel flowing through U-turn tubes [J]. Applied Thermal Engineering, 2017, 116: 43-55. |
26 | 王浚, 王佩广. 高超声速飞行器一体化防热与热控设计方法[J]. 北京航空航天大学学报, 2006, 32(10): 1129-1134. |
Wang J, Wang P G. Integrated thermal protection and control design methodology for hypersonic vehicles [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(10): 1129-1134. | |
27 | 王佩广, 刘永绩, 王浚. 高超声速飞行器综合热管理系统方案探讨[J]. 中国工程科学, 2007, 9(2): 44-48. |
Wang P G, Liu Y J, Wang J. Discussion on integrated environment control/thermal management system concepts for hypersonic vehicle [J]. Engineering Science, 2007, 9(2): 44-48. | |
28 | Jiang Q, Zhou W, Wen B, et al. Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet [J]. International Journal of Hydrogen Energy, 2010, 35(1): 356-364. |
29 | Kumar S, Mahulikar S P. Design of thermal protection system for reusable hypersonic vehicle using inverse approach [J]. Journal of Spacecraft & Rockets, 2017, 54(2): 1-11. |
30 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type [J]. University of California Publications in English, Berkeley, 1930, 2: 443-461. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[5] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[8] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[12] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||