CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 391-396.DOI: 10.11949/0438-1157.20191130

• Energy and environmental engineering • Previous Articles     Next Articles

Steady state performance of power generation/refrigeration combined system for new high speed vehicle

Liang GUO1(),Heng LI1,Liping PANG1(),Xiaodong MAO2,Jingquan ZHAO1,Xiaodong YANG3   

  1. 1.School of Aviation Science and Engineering, Beihang University, Beijing 100191, China
    2.School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, Liaoning, China
    3.Beijing Aerospace Technology Institute, Beijing 100074, China
  • Received:2019-10-07 Revised:2020-01-02 Online:2020-04-25 Published:2020-04-25
  • Contact: Liping PANG

高速运载器发电/制冷联合系统稳态性能

郭良1(),李恒1,庞丽萍1(),毛晓东2,赵竞全1,杨晓东3   

  1. 1.北京航空航天大学航空科学与工程学院,北京 100191
    2.沈阳航空航天大学航空发动机学院,辽宁 沈阳 110136
    3.北京空天技术研究所,北京 100074
  • 通讯作者: 庞丽萍
  • 作者简介:郭良(1995—),男,学士,729202688@qq.com
  • 基金资助:
    国家重点研发计划基金项目(2017YFB1201201);辽宁省“兴辽英才计划”基金项目(XLYC1802092)

Abstract:

At present, the research of high-speed vehicle has become a hot issue in the field of aviation science at home and abroad. With the increase of speed, the traditional air heat sink can no longer be used as refrigerant of environmental control system alone. At the same time, the rapid increase of electronic equipment brings more heat load and more power consumption. Therefore, the power generation and refrigeration capacity become two major problems restricting the performance improvement of high-speed vehicle. Based on the basic air compressor refrigeration cycle and the existing fuel as the heat sink environmental control system, this paper proposes a new type of high-speed carrier power generation refrigeration technology, and makes a detailed analysis of its steady-state performance. This scheme can make full use of fuel as heat sink, effectively transfer airborne heat load to fuel when the fuel does not exceed the safe temperature limit, and finally send it to the engine for combustion. It can also realize the use of high-temperature and high-pressure air as power-driven power generation device to meet the power demand of high-speed carriers. Through detailed theoretical calculation and computer modelling and simulation, the research results show that under the conditions of 1.45 kg·s-1, 644℃ and 3.89 bar (absolute pressure), the power generation of the system can reach 200 kW by adjusting the parameters of each component of the system to ensure that the maximum fuel temperature does not exceed 150℃, and at the same time, the temperature of the cabin can be controlled at about 30℃ under 100 kW heat load. It satisfies the requirement of high-speed vehicle for electric energy and the control of heat load very well.

Key words: air compression refrigeration, power generation refrigeration technology, air-fuel heat exchanger, computer simulation, heat transfer, thermodynamics

摘要:

目前高速运载器的研究已成为国内外航空科学领域的热点问题,速度的提高导致传统的空气热沉已经不能单独作为环境控制系统的制冷工质,同时电子设备的剧增带来更多的热负荷和更大的电量消耗,因此发电量和制冷量成为制约高速运载器性能提高的两大难题。从最基本的空气压缩制冷循环出发,结合现有的燃油作为热沉的环境控制系统,提出一种新型的高速运载器发电制冷技术方案,并对其稳态性能做出详细的分析研究。该方案可以充分利用燃油作为热沉,在保证燃油不超过安全温度限时将机载热负荷有效传递给燃油,最后送入发动机燃烧,而且可以实现利用高温高压的空气作为动力驱动发电装置,满足高速运载器对于电能的需求。经过详细的理论计算和计算机建模仿真,得出的研究结果表明,在1.45 kg·s-1、644℃和3.89 bar(绝压)的引气条件下,通过调整系统的各个部件参数,保证燃油最高温度不超过150℃时,系统的发电量可以达到200 kW;同时在100 kW热负荷条件下可以将舱室的温度控制在30℃左右,能够很好地满足高速运载器对于电能的需求和热负荷的控制。

关键词: 空气压缩制冷, 发电制冷技术, 空气-燃油换热器, 计算机模拟, 传热, 热力学

CLC Number: