CIESC Journal ›› 2020, Vol. 71 ›› Issue (S1): 397-403.DOI: 10.11949/0438-1157.20191098
• Energy and environmental engineering • Previous Articles Next Articles
Dong WANG(),Yaru LIU,Zhuo CHEN,Zunli KOU,Yuehong LU
Received:
2019-10-07
Revised:
2019-11-06
Online:
2020-04-25
Published:
2020-04-25
Contact:
Dong WANG
通讯作者:
王栋
作者简介:
王栋(1981—),男,博士,讲师,基金资助:
CLC Number:
Dong WANG, Yaru LIU, Zhuo CHEN, Zunli KOU, Yuehong LU. Effects on performance of small water-source heat pump water heater with CO2 by refrigerant charge and determination of optimal value[J]. CIESC Journal, 2020, 71(S1): 397-403.
王栋, 刘雅如, 陈卓, 寇遵丽, 鲁月红. 充注量对小型CO2水源热泵热水器性能的影响及其最佳值的确定[J]. 化工学报, 2020, 71(S1): 397-403.
Add to citation manager EndNote|Ris|BibTeX
尺寸和结构 | 气冷器 | 蒸发器/回热器 |
---|---|---|
结构 | 管式换热器(外管1根,内管3根) | 管式换热器(外管1根,内管1根) |
外径/mm | 19(外管),6(内管) | 16/10(外管),10/6(内管) |
壁厚/mm | 1(外管),1(内管) | 1.2/0.8(外管),0.8/0.5(内管) |
长度/m | 4.64(外管),4.64(内管) | 8.4/2(外管),8.4/2(内管) |
Table 1 Sizes and structure of heat exchangers
尺寸和结构 | 气冷器 | 蒸发器/回热器 |
---|---|---|
结构 | 管式换热器(外管1根,内管3根) | 管式换热器(外管1根,内管1根) |
外径/mm | 19(外管),6(内管) | 16/10(外管),10/6(内管) |
壁厚/mm | 1(外管),1(内管) | 1.2/0.8(外管),0.8/0.5(内管) |
长度/m | 4.64(外管),4.64(内管) | 8.4/2(外管),8.4/2(内管) |
状态点 | T /℃ | p/MPa | ρ/(kg·m-3) | h/(kJ·kg-1) | s/(kJ·kg-1·K-1) | cp/(kJ·kg-1·K-1) | X |
---|---|---|---|---|---|---|---|
1 | 15.0 | 3.7701 | 93.638 | 449.55 | 1.9012 | 1.5128 | 1 |
2 | 79.2 | 8.5 | 175.64 | 485.39 | 1.9012 | 1.5938 | 1 |
2’ | 83.4 | 8.5 | 170.08 | 491.96 | 1.9197 | 1.5347 | 1 |
3 | 34.0 | 8.5 | 644.7 | 300.9 | 1.3247 | 7.0601 | 1 |
4 | 30.2 | 8.5 | 723.44 | 280.32 | 1.2573 | 4.3457 | 1 |
5 | 3.0 | 3.7701 | 908.95(l) | 207.43(l) | 1.0259(l) | 2.6453(l) | 0.329 |
107.46(g) | 428.97(g) | 1.8282(g) | 2.0203(g) | ||||
6 | 3.0 | 3.7701 | 107.46 | 428.97 | 1.8282 | 2.0203 | 1 |
Table 2 Results of computer simulation
状态点 | T /℃ | p/MPa | ρ/(kg·m-3) | h/(kJ·kg-1) | s/(kJ·kg-1·K-1) | cp/(kJ·kg-1·K-1) | X |
---|---|---|---|---|---|---|---|
1 | 15.0 | 3.7701 | 93.638 | 449.55 | 1.9012 | 1.5128 | 1 |
2 | 79.2 | 8.5 | 175.64 | 485.39 | 1.9012 | 1.5938 | 1 |
2’ | 83.4 | 8.5 | 170.08 | 491.96 | 1.9197 | 1.5347 | 1 |
3 | 34.0 | 8.5 | 644.7 | 300.9 | 1.3247 | 7.0601 | 1 |
4 | 30.2 | 8.5 | 723.44 | 280.32 | 1.2573 | 4.3457 | 1 |
5 | 3.0 | 3.7701 | 908.95(l) | 207.43(l) | 1.0259(l) | 2.6453(l) | 0.329 |
107.46(g) | 428.97(g) | 1.8282(g) | 2.0203(g) | ||||
6 | 3.0 | 3.7701 | 107.46 | 428.97 | 1.8282 | 2.0203 | 1 |
1 | Park K J, Lee Y, Jung D. Performance of R170/R1270 mixture under air-conditioning and heat pumping conditions [J]. Journal of Mechanical Science and Technology, 2010, 24(4): 879-885. |
2 | Ju F J, Fan X W, Chen Y P, et al. Experiment and simulation study on performances of heat pump water heater using blend of R744/R290 [J]. Energy & Buildings, 2018, 169: 148-156. |
3 | 杨梦, 张华, 秦延斌, 等. 混合制冷剂R134a/R1234yf (R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(3): 1182-1189. |
Yang M, Zhang H, Qin Y B, et al. Thermodynamic performance comparison and experimental study of mixed refrigerant R134a/R1234yf(R513A) and R134a [J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1182-1189. | |
4 | Wang D, Liu Y R, Kou Z L, et al. Energy and exergy analysis of an air-source heat pump water heater system using CO2/R170 mixture as an azeotropy refrigerant for sustainable development [J]. International Journal of Refrigeration, 2019, 106: 628-638. |
5 | 梦照峰, 张华, 秦延斌, 等. R1234yf/R134a混合物在汽车空调中替代R134a的实验研究[J]. 化工学报, 2018, 69(6): 2396-2403. |
Meng Z F, Zhang H, Qin Y B, et al. Experimental study on R1234yf/R134a mixture as alternative to R134a in automobile air conditioner [J]. CIESC Journal, 2018, 69(6): 2396-2403. | |
6 | Tammaro M, Montagud C, Corberán J M, et al. Seasonal performance assessment of sanitary hot water production systems using propane and CO2 heat pumps [J]. International Journal of Refrigeration, 2017, 74: 224-239. |
7 | 何丽娟, 黄艳伟, 李虹琰. 双温低品位热驱动跨临界CO2-[emim][Tf2N]吸收制冷系统的性能[J]. 过程工程学报, 2017, 17(3): 626-631. |
He L J, Huang Y W, Li H Y. Hydrocyclone separation performance of an absorption refrigeration system driven by double low-quality energy using transcritical CO2-[emim][Tf2N] [J]. Chin. J. Process Eng., 2017, 17(3): 626-631. | |
8 | 寇宏侨, 罗会龙, 杜鸿儒, 等. 低温下提高CO2空气源热泵进水温度对系统性能的影响[J]. 化工学报, 2016, 67: 378-385. |
Kou H Q, Luo H L, Du H R, et al. Effects of inlet water temperature of air source carbon dioxide heat pump on system performance under low-temperature climate conditions [J]. CIESC Journal, 2016, 67: 378-385. | |
9 | 史敏, 贾磊, 张秀平, 等. CO2应用于我国工商制冷行业的适用性研究[J]. 制冷学报, 2016, 37(6): 97-103. |
Shi M, Jia L, Zhang X P, et al. Applicability research on CO2 application in Chinese industrial and commercial refrigeration industry [J]. Journal of Refrigeration, 2016, 37(6): 97-103. | |
10 | 武卫东, 贾松燊, 吴俊, 等. 以降压为目的的CO2混合工质制冷系统研究进展[J]. 化工进展, 2017, 36: 1969-1976. |
Wu W D, Jia S S, Wu J, et al. Research progress on refrigeration systems using CO2 mixture refrigerant to reduce its cycle pressure [J]. Chemical Industry and Engineering Progress, 2017, 36: 1969-1976. | |
11 | 代宝民, 刘圣春, 孙志利, 等. 机械过冷CO2跨临界制冷循环性能理论分析[J]. 制冷学报, 2018, 39(1): 13-19. |
Dai B M, Liu S C, Sun Z L, et al. Theoretical performance analysis of CO2 transcritical refrigeration cycle with mechanical subcooling [J]. Journal of Refrigeration, 2018, 39(1): 13-19. | |
12 | 赵宗彬, 宋昱龙, 包继虎, 等. 跨临界CO2空气源热泵性能研究[J]. 制冷学报, 2018, 39(2): 22-30. |
Zhao Z B, Song Y L, Bao J H, et al. Research on system performance of air-source transcritical CO2 heat pump [J]. Journal of Refrigeration, 2018, 39(2): 22-30. | |
13 | 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436. |
Jiang L L, Liu J H, Zhang L, et al. Flow boiling heat transfer characteristics of CO2 in horizontal micro-tube [J]. CIESC Journal, 2018, 69(4): 1428-1436. | |
14 | 刘忠彦, 孙大汉, 金旭, 等. CO2管内流动沸腾换热模型评价研究[J]. 化工学报, 2019, 70(1): 56-64. |
Liu Z Y, Sun D H, Jin X, et al. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64. | |
15 | 丁国良, 黄冬平. 二氧化碳制冷技术[M]. 北京: 化学工业出版社, 2006. |
Ding G L, Huang D P. Refrigeration Technology of CO2 [M]. Beijing: Chemical Industry Press, 2006. | |
16 | 邹春妹, 岑继文, 刘培, 等. 跨临界二氧化碳热泵喷射循环实验[J]. 化工学报, 2016, 67(4): 1520-1526. |
Zou C M, Cen J W, Liu P, et al. Transcritical CO2 heat pump system with an ejector [J]. CIESC Journal, 2016, 67(4): 1520-1526. | |
17 | Baek C, Heo J, Jung J, et al. Optimal control of the gas-cooler pressure of a CO2 heat pump using EEV opening and outdoor fan speed in the cooling mode [J]. International Journal of Refrigeration, 2013, 36(4): 1276-1284. |
18 | Agrawal N, Bhattacharyya S. Experimental investigations on adiabatic capillary tube in a transcritical CO2 heat pump system for simultaneous water cooling and heating [J]. International Journal of Refrigeration, 2011, 34(2): 476-483. |
19 | Yang J L, Ma Y T, Li M X, et al. Modeling and simulating the transcritical CO2 heat pump system [J]. Energy, 2010, 35(12): 4812-4818. |
20 | Song Y L, Wang J, Cao F, et al. Experimental investigation on a capillary tube based transcritical CO2 heat pump system [J]. Applied Thermal Engineering, 2017, 112: 184-189. |
21 | Cho H, Ryu C, Kim Y, et al. Effects of refrigerant charge amount on the performance of a transcritical CO2 heat pump [J]. International Journal of Refrigeration, 2005, 28(8): 1266-1273. |
22 | Kim D H, Park H S, Kim M S. The effect of the refrigerant charge amount on single and cascade cycle heat pump systems [J]. International Journal of Refrigeration, 2014, 40: 254-268. |
23 | Pisano A, Martínez-Ballester S, Corberán J M, et al. Optimal design of a light commercial freezer through the analysis of the combined effects of capillary tube diameter and refrigerant charge on the performance [J]. International Journal of Refrigeration, 2015, 52: 1-10. |
24 | 王栋, 姜敬德, 任红梅, 等. 充注量对小型CO2 制冷系统影响的实验研究[J]. 低温工程, 2013, 191(1): 56-59. |
Wang D, Jiang J D, Ren H M, et al. Experimental study on performances of a small carbon dioxide refrigeration system at different refrigerant charge [J]. Cryogenic Engineering, 2013, 191(1): 56-59. | |
25 | 王栋, 李蒙, 武卫东, 等. 小型CO2 制冷系统最佳充注量的计算及实验研究[J]. 西安交通大学学报, 2013, 47(3): 80-84. |
Wang D, Li M, Wu W D, et al. Calculation and experiment study on optimum charge for a small CO2 refrigeration system [J]. Journal of Xi an Jiaotong University, 2013, 47(3): 80-84. | |
26 | Wang D, Lu Y H, Tao L R. Optimal combination of capillary tube geometry and refrigerant charge on a small CO2 water-source heat pump water heater [J]. International Journal of Refrigeration, 2018, 88: 626-636. |
27 | Sarkar J, Bhattacharyya S, Gopal M R. Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications [J]. International Journal of Refrigeration, 2004, 27(8): 830-838. |
28 | Dmitriyev V I, Pisarenko V E. Determination of optimum refrigerant charge for domestic refrigerator units [J]. International Journal of Refrigeration, 1984, 7(3): 178-180. |
29 | 吴业正. 小型制冷装置设计指导[M]. 北京: 机械工业出版社, 2011. |
Wu Y Z. Design Guidance for Small Refrigeration Units [M]. Beijing: Machine Industry Press, 2011. | |
30 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 家用和类似用途热泵热水器: GB/T 23137—2008 [S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Heat pump water heater for household and similar application: GB/T 23137—2008 [S]. Beijing: Standards Press of China, 2008. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[5] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[6] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[7] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[8] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
[9] | Wenxuan XU, Jinbo JIANG, Xin PENG, Rixiu MEN, Chang LIU, Xudong PENG. Comparative study on leakage and film-forming characteristics of oil-gas seal with three-typical groove in a wide speed range [J]. CIESC Journal, 2023, 74(4): 1660-1679. |
[10] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[11] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[12] | Renchu HE, Zhaohui ZHANG, Minglei YANG, Cong WANG, Zhenhao XI. Online optimization of gasoline blending considering carbon emissions [J]. CIESC Journal, 2023, 74(2): 818-829. |
[13] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[14] | Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation [J]. CIESC Journal, 2022, 73(9): 3915-3928. |
[15] | Dan GUO, Yujie FANG, Yihan XU, Zhiyuan LI, Shouying HUANG, Shengping WANG, Xinbin MA. Research progress of the catalytic conversion of ethane and carbon dioxide [J]. CIESC Journal, 2022, 73(8): 3406-3416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||