CIESC Journal ›› 2021, Vol. 72 ›› Issue (12): 6328-6339.DOI: 10.11949/0438-1157.20211051
• Energy and environmental engineering • Previous Articles Next Articles
Yuanhui TANG1,2(),Wenwen SUN1,2,Taiyu LI2,Peng MAO1,Yifan JIN1,Lin WANG2,Yakai LIN2(),Xiaolin WANG2()
Received:
2021-07-27
Revised:
2021-09-26
Online:
2021-12-22
Published:
2021-12-05
Contact:
Yakai LIN,Xiaolin WANG
唐元晖1,2(),孙文文1,2,李太雨2,毛鹏1,金义凡1,汪林2,林亚凯2(),王晓琳2()
通讯作者:
林亚凯,王晓琳
作者简介:
唐元晖(1986—),女,博士,副教授,基金资助:
CLC Number:
Yuanhui TANG, Wenwen SUN, Taiyu LI, Peng MAO, Yifan JIN, Lin WANG, Yakai LIN, Xiaolin WANG. Reuse of wastewater from dicamba production by bipolar membrane electrodialysis[J]. CIESC Journal, 2021, 72(12): 6328-6339.
唐元晖, 孙文文, 李太雨, 毛鹏, 金义凡, 汪林, 林亚凯, 王晓琳. 双极膜电渗析法麦草畏生产废水的资源化利用研究[J]. 化工学报, 2021, 72(12): 6328-6339.
Add to citation manager EndNote|Ris|BibTeX
指标 | 数值 |
---|---|
pH | 6.6 |
COD/(mg/L) | 3000~5000 |
TOC/(mg/L) | 554.24 |
Ca2+/(mg/L) | 2.08 |
Mg2+/(mg/L) | 0.42 |
Na+/(g/L) | 160~200 |
Al3+/(mg/L) | 0.92 |
Table 1 Characteristics of the dicamba production wastewater after pretreatment
指标 | 数值 |
---|---|
pH | 6.6 |
COD/(mg/L) | 3000~5000 |
TOC/(mg/L) | 554.24 |
Ca2+/(mg/L) | 2.08 |
Mg2+/(mg/L) | 0.42 |
Na+/(g/L) | 160~200 |
Al3+/(mg/L) | 0.92 |
原料液 编号 | 原料液组成 | 运行参数 | ||
---|---|---|---|---|
NaCl/ (g/L) | 甲醇/ (mg/L) | 电流密度/ (mA/cm2) | 初始酸碱室浓度/ (mol/L) | |
1 | 160 | — | 50 | 0.050 |
2 | 160 | — | 60 | 0.050 |
3 | 160 | — | 70 | 0.050 |
4 | 160 | — | 80 | 0.050 |
5 | 160 | — | 70 | 0.025 |
6 | 160 | — | 70 | 0.050 |
7 | 160 | — | 70 | 0.075 |
8 | 160 | — | 70 | 0.10 |
9 | 160 | 10 | 70 | 0.075 |
10 | 160 | 100 | 70 | 0.075 |
11 | 160 | 1000 | 70 | 0.075 |
12 | 160 | 10000 | 70 | 0.075 |
13 | 180 | — | 70 | 0.075 |
14 | 200 | — | 70 | 0.075 |
15 | 实际废水 | 70 | 0.075 |
Table 2 Concentrations of the feed solution and corresponding operation parameters
原料液 编号 | 原料液组成 | 运行参数 | ||
---|---|---|---|---|
NaCl/ (g/L) | 甲醇/ (mg/L) | 电流密度/ (mA/cm2) | 初始酸碱室浓度/ (mol/L) | |
1 | 160 | — | 50 | 0.050 |
2 | 160 | — | 60 | 0.050 |
3 | 160 | — | 70 | 0.050 |
4 | 160 | — | 80 | 0.050 |
5 | 160 | — | 70 | 0.025 |
6 | 160 | — | 70 | 0.050 |
7 | 160 | — | 70 | 0.075 |
8 | 160 | — | 70 | 0.10 |
9 | 160 | 10 | 70 | 0.075 |
10 | 160 | 100 | 70 | 0.075 |
11 | 160 | 1000 | 70 | 0.075 |
12 | 160 | 10000 | 70 | 0.075 |
13 | 180 | — | 70 | 0.075 |
14 | 200 | — | 70 | 0.075 |
15 | 实际废水 | 70 | 0.075 |
1 | 徐铜文, 何炳林. 双极膜——新的工业革命[J]. 世界科技研究与发展, 2000, 22(3): 19-27. |
Xu T W, He B L. Bipolar membranes: prospects and opportunities[J]. World Sci-Tech R & D, 2000, 22(3): 19-27. | |
2 | 马洪运, 吴旭冉, 王保国. 双极膜分离技术及应用进展[J]. 化工进展, 2013, 32(10): 2274-2278+2301. |
Ma H Y, Wu X R, Wang B G. Perspective of bipolar membrane technologies and their applications[J]. Chemical Industry and Engineering Progress, 2013, 32(10): 2274-2278+2301. | |
3 | Frilette V J. Preparation and characterization of bipolar ion exchange membranes[J]. The Journal of Physical Chemistry, 1956, 60(4): 435-439. |
4 | Boyaval P, Seta J, Gavach C. Concentrated propionic acid production by electrodialysis[J]. Enzyme and Microbial Technology, 1993, 15(8): 683-686. |
5 | 褚衍旭, 王红萍, 彭政. BMED处理高氨氮羧甲司坦工业废水研究[J]. 环境科学与技术, 2017, 40(7): 131-135. |
Chu Y X, Wang H P, Peng Z. Treatment of the industrial carbocysteine effluent with high ammonia nitrogen by bipolar membrane electrodialysis[J]. Environmental Science & Technology, 2017, 40(7): 131-135. | |
6 | Ye W Y, Huang J, Lin J Y, et al. Environmental evaluation of bipolar membrane electrodialysis for NaOH production from wastewater: conditioning NaOH as a CO2 absorbent[J]. Separation and Purification Technology, 2015, 144: 206-214. |
7 | Xu T W. Electrodialysis processes with bipolar membranes (EDBM) in environmental protection-a review[J]. Resources, Conservation and Recycling, 2002, 37(1): 1-22. |
8 | Pärnamäe R, Mareev S, Nikonenko V, et al. Bipolar membranes: a review on principles, latest developments, and applications[J]. Journal of Membrane Science, 2021, 617: 118538. |
9 | 夏敏, 操容, 叶春松, 等. 双极膜电渗析技术在工业高含盐废水中的应用[J]. 化工进展, 2018, 37(7): 2820-2829. |
Xia M, Cao R, Ye C S, et al. Application of bipolar membrane electrodialysis for industrial high-salinity brine valorization[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2820-2829. | |
10 | Wang X X, Wang M, Jia Y X, et al. The feasible study on the reclamation of the glyphosate neutralization liquor by bipolar membrane electrodialysis[J]. Desalination, 2012, 300: 58-63. |
11 | Shen J N, Huang J, Liu L F, et al. The use of BMED for glyphosate recovery from glyphosate neutralization liquor in view of zero discharge[J]. Journal of Hazardous Materials, 2013, 260: 660-667. |
12 | 姜东军. 麦草畏合成工艺研究[D]. 杭州: 浙江工业大学, 2009. |
Jiang D J. Studies on the synthesis technology of dicamba[D]. Hangzhou: Zhejiang University of Technology, 2009. | |
13 | 陈勇, 邵守言, 朱桂生, 等. 麦草畏市场现状及合成路线研究进展[J]. 安徽化工, 2018, 44(1): 26-30. |
Chen Y, Shao S Y, Zhu G S, et al. A review of the marketing situation and synthetic method of dicamba[J]. Anhui Chemical Industry, 2018, 44(1): 26-30. | |
14 | 廖柳琳. 高盐废水处理工艺研究进展探析[J]. 环境与发展, 2019, 31(10): 67-69. |
Liao L L. Research progress of high-salt wastewater treatment[J]. Environment and Development, 2019, 31(10): 67-69. | |
15 | 李兴, 勾芒芒, 刘学峰, 等. 高盐废水处理现状及研究进展[J]. 水处理技术, 2019, 45(5): 6-10+14. |
Li X, Gou M M, Liu X F, et al. Research status and progress on treatment of high-salt wastewater[J]. Technology of Water Treatment, 2019, 45(5): 6-10+14. | |
16 | Herrero-Gonzalez M, Diaz-Guridi P, Dominguez-Ramos A, et al. Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes[J]. Separation and Purification Technology, 2020, 242: 116785. |
17 | 高艳荣, 王建友, 刘红斌. 双极膜电渗析解离NaCl清洁制备酸碱的实验研究[J]. 膜科学与技术, 2014, 34(3): 96-103. |
Gao Y R, Wang J Y, Liu H B. Clean preparation of acid and base by NaCl splitting using bipolar membrane electrodialysis[J]. Membrane Science and Technology, 2014, 34(3): 96-103. | |
18 | 杨建鑫, 王建友, 张振辉, 等. 双极膜电渗析处理精制浓海水制备酸碱[J]. 水处理技术, 2016, 42(5): 17-22. |
Yang J X, Wang J Y, Zhang Z H, et al. Preparation of acid and base by refined content contentrated seawater with bipolar membrane electrodialysis process[J]. Technology of Water Treatment, 2016, 42(5): 17-22. | |
19 | Tian W D, Wang X, Fan C Y, et al. Optimal treatment of hypersaline industrial wastewater via bipolar membrane electrodialysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12358-12368. |
20 | Lv Y, Yan H Y, Yang B J, et al. Bipolar membrane electrodialysis for the recycling of ammonium chloride wastewater: membrane selection and process optimization[J]. Chemical Engineering Research and Design, 2018, 138: 105-115. |
21 | Venugopal K, Dharmalingam S. Evaluation of synthetic salt water desalination by using a functionalized polysulfone based bipolar membrane electrodialysis cell[J]. Desalination, 2014, 344: 189-197. |
22 | 杨露. 双极膜电渗析处理高盐废液的研究[D]. 杭州: 浙江工业大学, 2019. |
Yang L. Application of bipolar membrane electrodialysis on treatment of high-salt waste liquid[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
23 | Li Y, Shi S Y, Cao H B, et al. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater[J]. Water Research, 2016, 89: 201-209. |
24 | 汪耀明. 双极膜电渗析法生产有机酸过程的几个关键科学问题研究[D]. 合肥: 中国科学技术大学, 2011. |
Wang Y M. Analysis of some key scientifical issues in the organic acids production by electrodialysis with bipolar membranes[D]. Hefei: University of Science and Technology of China, 2011. | |
25 | 林晗, 汪群慧, 王丽娟, 等. 双极膜电渗析法分离发酵液中乳酸及离子迁移规律[J]. 化工学报, 2014, 65(12): 4823-4830. |
Lin H, Wang Q H, Wang L J, et al. Lactic acid recovery from fermentation by bipolar membrane electrodialysis and ionic migration[J]. CIESC Journal, 2014, 65(12): 4823-4830. | |
26 | Wilhelm F G, Pünt I, van der Vegt N F A, et al. Optimisation strategies for the preparation of bipolar membranes with reduced salt ion leakage in acid-base electrodialysis[J]. Journal of Membrane Science, 2001, 182(1/2): 13-28. |
[1] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[2] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[3] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[4] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[5] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[6] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[7] | Chengwei LI, Huayong LUO, Mingxuan ZHANG, Peng LIAO, Qian FANG, Hongwei RONG, Jingyin WANG. Microfludically-generated lanthanum hydroxide cross-linked chitosan microspheres for phosphate removal [J]. CIESC Journal, 2022, 73(9): 3929-3939. |
[8] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[9] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
[10] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[11] | Yanping JIA, Xue DING, Jian GANG, Zewei TONG, Haifeng ZHANG, Lanhe ZHANG. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater [J]. CIESC Journal, 2022, 73(5): 2183-2193. |
[12] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[13] | Xiqiang ZHAO, Jian ZHANG, Shuang SUN, Wenlong WANG, Yanpeng MAO, Jing SUN, Jinglong LIU, Zhanlong SONG. Study on the performance of biochar modified microspheres to remove inorganic phosphorus from chemical wastewater [J]. CIESC Journal, 2022, 73(5): 2158-2173. |
[14] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[15] | Heng MAO, Yue WANG, Sen WANG, Weimin LIU, Jing LYU, Fuxue CHEN, Zhiping ZHAO. APTES-modified ZIF-L/PEBA mixed matrix membranes for enhancing phenol perm-selective pervaporation [J]. CIESC Journal, 2022, 73(3): 1389-1402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||