CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1714-1723.DOI: 10.11949/0438-1157.20211584
• Energy and environmental engineering • Previous Articles Next Articles
Wenliang MENG1,2(),Guixian LI1,2(),Huairong ZHOU1,2,Jingwei LI1,2,Jian WANG1,2,Ke WANG1,2,Xueying FAN3,Dongliang WANG1,2()
Received:
2021-11-09
Revised:
2021-12-22
Online:
2022-04-25
Published:
2022-04-05
Contact:
Guixian LI,Dongliang WANG
孟文亮1,2(),李贵贤1,2(),周怀荣1,2,李婧玮1,2,王健1,2,王可1,2,范学英3,王东亮1,2()
通讯作者:
李贵贤,王东亮
作者简介:
孟文亮(1996—),男,博士研究生,基金资助:
CLC Number:
Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen[J]. CIESC Journal, 2022, 73(4): 1714-1723.
孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
Add to citation manager EndNote|Ris|BibTeX
传统煤制甲醇工艺 | 近零碳排放的煤制甲醇新工艺 | ||
---|---|---|---|
煤气化单元 | 煤气化单元 | ||
气化温度/℃ | 1554 | 气化温度/℃ | 1554 |
气化压力/MPa | 8.8 | 气化压力/MPa | 8.8 |
煤转化率/% | >99 | 煤转化率/% | >99 |
水煤气变换单元 | 电解水制氢单元 | ||
高/低变温度/℃ | 350/220 | 工作效率/% | 70~90 |
压力/MPa | 3 | 工作压力/MPa | 3.2 |
蒸汽/CO摩尔比 | 0.94 | 能耗/(kWh·m-3) | 3.8~5.0 |
低温甲醇洗单元 | 短流程的低温甲醇洗单元 | ||
H2S移除率/%(mol) | 100 | H2S移除率/%(mol) | 100 |
CO2移除率/%(mol) | 96 | CO2移除率/%(mol) | 30 |
甲醇合成单元 | 甲醇合成单元 | ||
催化剂 | Cu/ZnO/Al2O3 | 催化剂 | Cu/ZnO/Al2O3 |
未反应气循环比/% | 99 | 未反应气循环比/% | 99 |
温度/℃ | 240 | 温度/℃ | 250 |
压力/MPa | 8 | 压力/MPa | 8 |
甲醇精馏单元 | 甲醇精馏单元 | ||
甲醇回收率/%(mol) | 99.9 | 甲醇回收率/%(mol) | 99.9 |
精甲醇纯度/%(mass) | 99.9 | 精甲醇纯度/%(mass) | 99.9 |
Table 2 Key parameters for process simulation
传统煤制甲醇工艺 | 近零碳排放的煤制甲醇新工艺 | ||
---|---|---|---|
煤气化单元 | 煤气化单元 | ||
气化温度/℃ | 1554 | 气化温度/℃ | 1554 |
气化压力/MPa | 8.8 | 气化压力/MPa | 8.8 |
煤转化率/% | >99 | 煤转化率/% | >99 |
水煤气变换单元 | 电解水制氢单元 | ||
高/低变温度/℃ | 350/220 | 工作效率/% | 70~90 |
压力/MPa | 3 | 工作压力/MPa | 3.2 |
蒸汽/CO摩尔比 | 0.94 | 能耗/(kWh·m-3) | 3.8~5.0 |
低温甲醇洗单元 | 短流程的低温甲醇洗单元 | ||
H2S移除率/%(mol) | 100 | H2S移除率/%(mol) | 100 |
CO2移除率/%(mol) | 96 | CO2移除率/%(mol) | 30 |
甲醇合成单元 | 甲醇合成单元 | ||
催化剂 | Cu/ZnO/Al2O3 | 催化剂 | Cu/ZnO/Al2O3 |
未反应气循环比/% | 99 | 未反应气循环比/% | 99 |
温度/℃ | 240 | 温度/℃ | 250 |
压力/MPa | 8 | 压力/MPa | 8 |
甲醇精馏单元 | 甲醇精馏单元 | ||
甲醇回收率/%(mol) | 99.9 | 甲醇回收率/%(mol) | 99.9 |
精甲醇纯度/%(mass) | 99.9 | 精甲醇纯度/%(mass) | 99.9 |
流股 | 温度/℃ | 压力/MPa | 摩尔分数/% | 摩尔流量/ (kmol·h-1) | 质量流量/ (kg·h-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | H2O | CO | CO2 | H2S | H2 | CH3OH | |||||
1 | 25 | 0.1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 100000 | |
2 | 210 | 4 | 0.58 | 0 | 6.51 | 62.65 | 4.03 | 0.1 | 26.13 | 0 | 9841.63 | 208608 |
3 | 90 | 4 | 0.44 | 0 | 0.24 | 20.69 | 30.75 | 0.08 | 47.8 | 0 | 12798 | 262163 |
4 | 30 | 0.2 | 6.31 | 0 | 0 | 0.31 | 93.2 | 0 | 0.17 | 0.01 | 3240.81 | 138965 |
5 | 30 | 2.8 | 0.63 | 0 | 0 | 29.38 | 1.84 | 0 | 68.15 | 0 | 8965.75 | 94945 |
6 | 41 | 0.1 | 0 | 0 | 5.06 | 0 | 0.14 | 0 | 0 | 94.8 | 2904.73 | 91055 |
7 | 67 | 0.1 | 0 | 0 | 0.18 | 0 | 0 | 0 | 0 | 99.82 | 2755.83 | 88117.89 |
Table 3 Simulation results at key points of the traditional coal to methanol process
流股 | 温度/℃ | 压力/MPa | 摩尔分数/% | 摩尔流量/ (kmol·h-1) | 质量流量/ (kg·h-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | H2O | CO | CO2 | H2S | H2 | CH3OH | |||||
1 | 25 | 0.1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 100000 | |
2 | 210 | 4 | 0.58 | 0 | 6.51 | 62.65 | 4.03 | 0.1 | 26.13 | 0 | 9841.63 | 208608 |
3 | 90 | 4 | 0.44 | 0 | 0.24 | 20.69 | 30.75 | 0.08 | 47.8 | 0 | 12798 | 262163 |
4 | 30 | 0.2 | 6.31 | 0 | 0 | 0.31 | 93.2 | 0 | 0.17 | 0.01 | 3240.81 | 138965 |
5 | 30 | 2.8 | 0.63 | 0 | 0 | 29.38 | 1.84 | 0 | 68.15 | 0 | 8965.75 | 94945 |
6 | 41 | 0.1 | 0 | 0 | 5.06 | 0 | 0.14 | 0 | 0 | 94.8 | 2904.73 | 91055 |
7 | 67 | 0.1 | 0 | 0 | 0.18 | 0 | 0 | 0 | 0 | 99.82 | 2755.83 | 88117.89 |
流股 | 温度/℃ | 压力/MPa | 摩尔分数/% | 摩尔流量/ (kmol·h-1) | 质量流量/ (kg·h-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | H2O | CO | CO2 | H2S | H2 | CH3OH | |||||
1 | 25 | 0.1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 100000 | |
2 | 86 | 3.2 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 2343.75 | 75000 |
3 | 210 | 4 | 0.26 | 0 | 6.53 | 62.85 | 4.04 | 0.01 | 26.21 | 0 | 9841.63 | 208614 |
4 | 30 | 2.8 | 0.29 | 0 | 0 | 68.15 | 3.11 | 0 | 28.44 | 0 | 9062.82 | 191368 |
5 | 86 | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 11396.03 | 22792 |
6 | 41 | 0.1 | 0 | 0 | 3.75 | 0 | 0.13 | 0 | 0 | 96.12 | 6620.84 | 208758 |
7 | 67 | 0.1 | 0 | 0 | 0.18 | 0 | 0 | 0 | 0 | 99.82 | 6368.89 | 203646 |
Table 4 Simulation results at key points of the novel process
流股 | 温度/℃ | 压力/MPa | 摩尔分数/% | 摩尔流量/ (kmol·h-1) | 质量流量/ (kg·h-1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | H2O | CO | CO2 | H2S | H2 | CH3OH | |||||
1 | 25 | 0.1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 100000 | |
2 | 86 | 3.2 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 2343.75 | 75000 |
3 | 210 | 4 | 0.26 | 0 | 6.53 | 62.85 | 4.04 | 0.01 | 26.21 | 0 | 9841.63 | 208614 |
4 | 30 | 2.8 | 0.29 | 0 | 0 | 68.15 | 3.11 | 0 | 28.44 | 0 | 9062.82 | 191368 |
5 | 86 | 3.2 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 11396.03 | 22792 |
6 | 41 | 0.1 | 0 | 0 | 3.75 | 0 | 0.13 | 0 | 0 | 96.12 | 6620.84 | 208758 |
7 | 67 | 0.1 | 0 | 0 | 0.18 | 0 | 0 | 0 | 0 | 99.82 | 6368.89 | 203646 |
工艺 | 能耗/(MJ·(kg MeOH))-1 | ||||||
---|---|---|---|---|---|---|---|
AS | CG | WGS | AGR | SAGR | MS | MD | |
传统煤制甲醇工艺 | 4.2 | -3.0 | -1.9 | 5.5 | — | -1.6 | 2.5 |
近零碳排放的煤制甲醇新工艺 | — | -1.3 | — | — | 0.8 | -1.6 | 2.4 |
Table 5 Energy consumption of different units in the two different processes
工艺 | 能耗/(MJ·(kg MeOH))-1 | ||||||
---|---|---|---|---|---|---|---|
AS | CG | WGS | AGR | SAGR | MS | MD | |
传统煤制甲醇工艺 | 4.2 | -3.0 | -1.9 | 5.5 | — | -1.6 | 2.5 |
近零碳排放的煤制甲醇新工艺 | — | -1.3 | — | — | 0.8 | -1.6 | 2.4 |
1 | Yang Q C, Li X F, Yang Q, et al. Opportunities for CO2 utilization in coal to green fuel process: optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
2 | Chen Q Q, Lv M, Gu Y, et al. Hybrid energy system for a coal-based chemical industry[J]. Joule, 2018, 2(4): 607-620. |
3 | Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 850-866. |
4 | 唐志永, 孙予罕, 江绵恒. 低碳复合能源系统——中国未来能源的解决方案和发展模式? [J].中国科学, 2013, 43(1): 116-124. |
Tang Z Y, Sun Y H, Jiang M H. Low-carbon hybrid energy systems: future energy solutions and development models in China?[J]. Scientia sinica Chimica 43(1): 116-124. | |
5 | Xiang D, Yang S Y, Liu X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240: 45-54. |
6 | Chen J J, Yang S Y, Qian Y. A novel path for carbon-rich resource utilization with lower emission and higher efficiency: an integrated process of coal gasification and coking to methanol production[J]. Energy, 2019, 177: 304-318. |
7 | Zhang J P, Li Z W, Zhang Z H, et al. Techno-economic analysis of integrating a CO2 hydrogenation-to-methanol unit with a coal-to-methanol process for CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 18062-18070. |
8 | 刘硕士, 杨思宇, 顾竞芳, 等. 气煤联供实现资源高效利用和碳减排技术进展[J]. 化工进展, 2019, 38(1): 664-671. |
Liu S S, Yang S Y, Gu J F, et al. Review on coal and gas co-feed processes for better resource use and lower carbon emission[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 664-671. | |
9 | Qin Z, Zhai G F, Wu X M, et al. Carbon footprint evaluation of coal-to-methanol chain with the hierarchical attribution management and life cycle assessment[J]. Energy Conversion and Management, 2016, 124: 168-179. |
10 | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8. |
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8. | |
11 | Qin Z, Bhattacharya S, Tang K, et al. Effects of gasification condition on the overall performance of methanol-electricity polygeneration system[J]. Energy Conversion and Management, 2019, 184: 362-373. |
12 | 黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869. |
Huang H, Yang S Y. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869. | |
13 | Wang D L, Meng W L, Zhou H R, et al. Green hydrogen coupling with CO2 utilization of coal-to-methanol for high methanol productivity and low CO2 emission[J]. Energy, 2021, 231: 120970. |
14 | 东赫, 刘金昌, 解强, 等. 典型气流床煤气化炉气化过程的建模[J]. 化工进展, 2016, 35(8): 2426-2431. |
Dong H, Liu J C, Xie Q, et al. Modeling of coal gasification reaction in typical entrained-flow coal gasifiers[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2426-2431. | |
15 | Qin S Y, Chang S Y, Yao Q. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers[J]. Applied Energy, 2018, 229: 413-432. |
16 | Park N, Park M J, Ha K S, et al. Modeling and analysis of a methanol synthesis process using a mixed reforming reactor: perspective on methanol production and CO2 utilization[J]. Fuel, 2014, 129: 163-172. |
17 | Bussche K M V, Froment G F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst[J]. Journal of Catalysis, 1996, 161(1): 1-10. |
18 | Cui C T, Sun J S, Li X G. A hybrid design combining double-effect thermal integration and heat pump to the methanol distillation process for improving energy efficiency[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 81-92. |
19 | Liu X, Yang S Y, Hu Z G, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83: 48-57. |
20 | Sun L, Smith R. Rectisol wash process simulation and analysis[J]. Journal of Cleaner Production, 2013, 39: 321-328. |
21 | 赵鹏飞, 李水弟, 王立志. 低温甲醇洗技术及其在煤化工中的应用[J]. 化工进展, 2012, 31(11): 2442-2448. |
Zhao P F, Li S D, Wang L Z. Rectisol technology and its application in coal chemical industry[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2442-2448. | |
22 | 贾欣, 赵文星, 王建成, 等. 低温甲醇洗吸收塔产出液再生过程模拟研究[J]. 天然气化工(C1化学与化工), 2019, 44(3): 65-70. |
Jia X, Zhao W X, Wang J C, et al. Regeneration process simulation of the output fluid from rectisol absorber[J]. Natural Gas Chemical Industry, 2019, 44(3): 65-70. | |
23 | Yang Q C, Zhang J L, Chu G Y, et al. Optimal design, thermodynamic and economic analysis of coal to ethylene glycol processes integrated with various methane reforming technologies for CO2 reduction[J]. Energy Conversion and Management, 2021, 244: 114538. |
24 | Yang Q C, Zhu S, Yang Q, et al. Comparative techno-economic analysis of oil-based and coal-based ethylene glycol processes[J]. Energy Conversion and Management, 2019, 198: 111814. |
25 | Yi Q, Wu G S, Gong M H, et al. A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas[J]. Applied Energy, 2017, 193: 149-161. |
26 | Zhang D Q, Duan R H, Li H W, et al. Optimal design, thermodynamic, cost and CO2 emission analyses of coal-to-methanol process integrated with chemical looping air separation and hydrogen technology[J]. Energy, 2020, 203: 117876. |
27 | Li M X, Zhuang Y, Zhang L, et al. Conceptual design and techno-economic analysis for a coal-to-SNG/methanol polygeneration process in series and parallel reactors with integration of waste heat recovery[J]. Energy Conversion and Management, 2020, 214: 112890. |
28 | 杨庆, 许思敏, 张大伟, 等. 石油与煤路线制乙二醇过程的技术经济分析[J]. 化工学报, 2020, 71(5): 2164-2172. |
Yang Q, Xu S M, Zhang D W, et al. Techno-economic analysis of oil and coal to ethylene glycol processes[J]. CIESC Journal, 2020, 71(5): 2164-2172. | |
29 | Xiang D, Li P, Yuan X Y, et al. Highly efficient carbon utilization of coal-to-methanol process integrated with chemical looping hydrogen and air separation technology: process modeling and parameter optimization[J]. Journal of Cleaner Production, 2020, 258: 120910. |
30 | 王科, 刘永艳. 2020 年中国碳市场回顾与展望[J]. 北京理工大学学报(社会科学版), 2020, 22(2): 10-19. |
Wang K, Liu Y Y. China's carbon market: reviews and prospects for 2020[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2020, 22(2): 10-19. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[5] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[6] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[7] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[8] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[11] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[12] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[13] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[14] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[15] | Chenxi LI, Yongfeng LIU, Lu ZHANG, Haifeng LIU, Jin’ou SONG, Xu HE. Quantum chemical analysis of n-heptane combustion mechanism under O2/CO2 atmosphere [J]. CIESC Journal, 2023, 74(5): 2157-2169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||