CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2514-2527.DOI: 10.11949/0438-1157.20201396
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
PAN Feng(),WANG Chaojie,MU Lizhong,HE Ying()
Received:
2020-10-09
Revised:
2021-01-11
Online:
2021-05-05
Published:
2021-05-05
Contact:
HE Ying
通讯作者:
贺缨
作者简介:
潘丰(1991—),男,博士研究生,基金资助:
CLC Number:
PAN Feng, WANG Chaojie, MU Lizhong, HE Ying. Analysis of the influence of microlayer evaporation on single-bubble pool boiling by coupling the experimental observations and numerical simulations[J]. CIESC Journal, 2021, 72(5): 2514-2527.
潘丰, 王超杰, 母立众, 贺缨. 池沸腾孤立气泡生长过程中微液层蒸发影响的实验和模拟耦合分析[J]. 化工学报, 2021, 72(5): 2514-2527.
Add to citation manager EndNote|Ris|BibTeX
Fig.13 The simulated variations of the mean superheat on the heated surface and the local superheat at the position of 2.5 mm below the surface (a) and the mean superheat of heated surface within one bubble period (b)
Fig.14 The superheat distributions of the heated surface in the simulation and the positions of bubble interface of the experiment at different moments
1 | Yaddanapudi N, Kim J. Single bubble heat transfer in saturated pool boiling of FC-72[J]. Multiphase Science and Technology, 2000, 12(3/4): 47-63. |
2 | Bankoff S G. Taylor instability of an evaporating plane interface[J]. AIChE Journal, 1961, 7(3): 485-487. |
3 | Cooper M G. The microlayer and bubble growth in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 1969, 12(8): 915-933. |
4 | Das A K, Das P K, Saha P. Heat transfer during pool boiling based on evaporation from micro and macrolayer[J]. International Journal of Heat and Mass Transfer, 2006, 49(19/20): 3487-3499. |
5 | 柴立和, 彭晓峰, 王补宣. 池内核态沸腾换热新模型[J]. 化工学报, 2000, 51(5): 598-603. |
Chai L H, Peng X F, Wang B X. New model for pool nucleate boiling heat transfer[J]. Journal of Chemical Industry and Engineering (China), 2000, 51(5): 598-603. | |
6 | de Yabuki T, Nakabeppu O. Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor[J]. International Journal of Heat and Mass Transfer, 2014, 76: 286-297. |
7 | Tange M, Ito M, Kobayashi K, et al. Heat flux partitioning of pool boiling in a confined space into flow field, liquid film thickness, and rewetting[J]. Thermal Science & Engineering, 2017, 25(4): 57-64. |
8 | Zou A, Chanana A, Agrawal A, et al. Steady state vapor bubble in pool boiling[J]. Scientific Reports, 2016, 6: 20240. |
9 | Sakashita H, Ono A, Nyui J. Critical heat flux and near-wall boiling behaviors in saturated and subcooled pool boiling on vertical and inclined surfaces[J]. Journal of Nuclear Science and Technology, 2009, 46(11): 1038-1048. |
10 | Höhmann C, Stephan P. Microscale temperature measurement at an evaporating liquid meniscus[J]. Experimental Thermal and Fluid Science, 2002, 26(2/3/4): 157-162. |
11 | Stephan P, Fuchs T, Wagner E, et al. Transient local heat fluxes during the entire vapor bubble life time[C]//Proceedings of the ECI International Conference on Boiling Heat Transfer. Florianópolis, Brazil, 2009: 919-928. |
12 | 陈宏霞, 孙源, 宫逸飞, 等. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317. |
Chen H X, Sun Y, Gong Y F, et al. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70(4): 1309-1317. | |
13 | 陈宏霞, 孙源, 肖红洋, 等. 微柱结构表面核态沸腾单气泡的数值模拟[J]. 化工进展, 2019, 38(11): 4845-4855. |
Chen H X, Sun Y, Xiao H Y, et al. Numerical simulation of single bubble boiling on micro-pillar structure surface[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4845-4855. | |
14 | 牟帅, 赵长颖, 徐治国. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理[J]. 化工学报, 2019, 70(4): 1291-1301. |
Mou S, Zhao C Y, Xu Z G. Pool boiling heat transfer performance and mechanism of square copper pillar arrays with partially-modified surface[J]. CIESC Journal, 2019, 70(4): 1291-1301. | |
15 | Gong S J, Ma W M, Gu H Y. An experimental investigation on bubble dynamics and boiling crisis in liquid films[J]. International Journal of Heat and Mass Transfer, 2014, 79: 694-703. |
16 | Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 222-230. |
17 | Koffman L D, Plesset M S. Experimental observations of the microlayer in vapor bubble growth on a heated solid[J]. Journal of Heat Transfer, 1983, 105(3): 625-632. |
18 | Gao M, Zhang L X, Cheng P, et al. An investigation of microlayer beneath nucleation bubble by laser interferometric method[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 183-189. |
19 | Jung S, Kim H. An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. International Journal of Heat and Mass Transfer, 2014, 73: 365-375. |
20 | Kunkelmann C, Stephan P. CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM[J]. Numerical Heat Transfer, Part A: Applications, 2009, 56(8): 631-646. |
21 | 杜世元, 赵耀华. 薄液膜蒸发传热影响因素分析[J]. 化学工程, 2011, 39(4): 54-57, 64. |
Du S Y, Zhao Y H. Analyses of factors affecting heat transfer in evaporating thin film region[J]. Chemical Engineering (China), 2011, 39(4): 54-57, 64. | |
22 | Bi J L, Vafai K, Christopher D M. Heat transfer characteristics and CHF prediction in nanofluid boiling[J]. International Journal of Heat and Mass Transfer, 2015, 80: 256-265. |
23 | Stephan P, Hammer J. A new model for nucleate boiling heat transfer[J]. Heat and Mass Transfer, 1994, 30(2): 119-125. |
24 | Jiang Y Y, Osada H, de Inagaki M, et al. Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2013, 56(1/2): 640-652. |
25 | Sato Y, Niceno B. A depletable micro-layer model for nucleate pool boiling[J]. Journal of Computational Physics, 2015, 300: 20-52. |
26 | 王烨, 蔡杰进. 基于微液层模型的单汽泡生长数值模拟研究[J]. 原子能科学技术, 2018, 52(4): 600-606. |
Wang Y, Cai J J. Numerical simulation of single bubble evolution based on microlayer model[J]. Atomic Energy Science and Technology, 2018, 52(4): 600-606. | |
27 | 程坤, 潘丰, 王超杰, 等. 狭窄加热表面上核态沸腾中汽泡合并特性的实验研究[J]. 工程热物理学报, 2019, 40(11): 2622-2631. |
Cheng K, Pan F, Wang C J, et al. Experimental study of bubble coalescence behavior in nucleate boiling at a narrow heating surface[J]. Journal of Engineering Thermophysics, 2019, 40(11): 2622-2631. | |
28 | 陈汉梽, 姚远, 公茂琼, 等. 乙烷池内核态沸腾气泡脱离直径[J]. 化工学报, 2018, 69(4): 1419-1427. |
Chen H Z, Yao Y, Gong M Q, et al. Experimental study on bubble departure diameter of ethane saturated nucleate pool boiling[J]. CIESC Journal, 2018, 69(4): 1419-1427. | |
29 | 刘维波, 张小鹏. 基础力学实验[M]. 大连: 大连理工大学出版社, 2011: 105-111. |
Liu W B, Zhang X P. Mechanics Experiment[M]. Dalian: Dalian University of Technology Press, 2011: 105-111. | |
30 | Fuchs T, Kern J, Stephan P. A transient nucleate boiling model including microscale effects and wall heat transfer[J]. Journal of Heat Transfer, 2006, 128(12): 1257-1265. |
31 | Mukherjee A, Kandlikar S G. Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2007, 50(1/2): 127-138. |
32 | Pan F, Mu L, He Y, et al. A thermal-hydrodynamic coupling method for simulation of the interplay between bubble departure behavior and wall temperature variation in nucleate boiling [J]. Journal of Hydrodynamics, 2021, 33(2): 93-108. |
33 | Li Y X, Zhang K, Lu M C, et al. Single bubble dynamics on superheated superhydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2016, 99: 521-531. |
34 | Giustini G, Jung S, Kim H, et al. Microlayer evaporation during steam bubble growth[J]. International Journal of Thermal Sciences, 2019, 137: 45-54. |
35 | 徐济鋆. 沸腾传热和气液两相流[M].北京:原子能出版社,2001: 220. |
Xu J J. Boiling Heat Transfer and Two-phase Flow [M]. Beijing: Atomic Energy Press, 2001: 220. | |
36 | 赵耀华. 沸腾换热及临界热流的动态微液层模型[J]. 工程热物理学报, 2002, 23(S1): 85-88. |
Zhao Y H. The dynamic microlayer model for nucleate boiling heat transfer and chf[J]. Journal of Engineering Thermophysics, 2002, 23(S1): 85-88. | |
37 | Heng Y, Mhamdi A, Wagner E, et al. Estimation of local nucleate boiling heat flux using a three-dimensional transient heat conduction model[J]. Inverse Problems in Science and Engineering, 2010, 18(2): 279-294. |
38 | 潘丰, 贺缨, 唐元梁. 加热表面粗糙度对高热流密度沸腾传热影响的多尺度数值模拟[J]. 工程热物理学报, 2016, 37(11): 2397-2408. |
Pan F, He Y, Tang Y L. A multi-scale numerical study on the influence of surface roughness on high-flux nucleate boiling[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2397-2408. |
[1] | Xin WU, Jianying GONG, Long JIN, Yutao WANG, Ruining HUANG. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation [J]. CIESC Journal, 2023, 74(S1): 104-112. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[5] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[6] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[7] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[8] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[9] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[10] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[11] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[12] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[13] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[14] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[15] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||