CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2528-2546.DOI: 10.11949/0438-1157.20201302
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
ZHU Dandan1(),XU Xiongwen1,2(),LIU Jinping1,2,LU Jiong1
Received:
2020-09-10
Revised:
2020-11-11
Online:
2021-05-05
Published:
2021-05-05
Contact:
XU Xiongwen
通讯作者:
许雄文
作者简介:
朱丹丹(1995—),女,硕士研究生,基金资助:
CLC Number:
ZHU Dandan, XU Xiongwen, LIU Jinping, LU Jiong. Characteristic of condensation heat transfer of hybrid wettable patterned copper surfaces[J]. CIESC Journal, 2021, 72(5): 2528-2546.
朱丹丹, 许雄文, 刘金平, 卢炯. 混合润湿性图案化铜基表面冷凝换热性能研究[J]. 化工学报, 2021, 72(5): 2528-2546.
1 | Rose J W. Surface tension effects and enhancement of condensation heat transfer[J]. Chemical Engineering Research and Design, 2004, 82(4): 419-429. |
2 | 唐媛, 宋佳, 白杨, 等. 滴状冷凝的实现方法研究进展[J]. 浙江大学学报(工学版), 2018, 52(2): 273-287, 332. |
Tang Y, Song J, Bai Y, et al. Progress in implementation of dropwise condensation[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 273-287, 332. | |
3 | Castillo J E, Weibel J A, Garimella S V. The effect of relative humidity on dropwise condensation dynamics[J]. International Journal of Heat and Mass Transfer, 2015, 80: 759-766. |
4 | Torresin D, Tiwari M K, Del Col D, et al. Flow condensation on copper-based nanotextured superhydrophobic surfaces[J]. Langmuir, 2013, 29(2): 840-848. |
5 | Zhang S D, Zheng X L, Wang P, et al. Fabrication of super-hydrophobic micro-needle ZnO surface as corrosion barrier against corrosion in simulated condensation environment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124087. |
6 | Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18): 184501. |
7 | Liu T Q, Sun W, Sun X Y, et al. Mechanism study of condensed drops jumping on super-hydrophobic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414: 366-374. |
8 | Qu X, Boreyko J B, Liu F, et al. Self-propelled sweeping removal of dropwise condensate[J]. Applied Physics Letters, 2015, 106(22): 221601. |
9 | Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
10 | Chen L, Wang S Y, Xiang X, et al. Mechanism of surface nanostructure changing wettability: a molecular dynamics simulation[J]. Computational Materials Science, 2020, 171: 109223. |
11 | 李书宏, 冯琳, 李欢军, 等. 柱状结构阵列碳纳米管膜的超疏水性研究[J]. 高等学校化学学报, 2003, 24(2): 340-342. |
Li S H, Feng L, Li H J, et al. Super-hydrophobicity of post-like aligned carbon nanotube films[J]. Chemical Journal of Chinese Universities, 2003, 24(2): 340-342. | |
12 | 马福民, 郝全勇, 张燕, 等. 氧化还原法刻蚀制备铜基超疏水表面[J]. 科学技术与工程, 2013, 13(14): 3960-3962. |
Ma F M, Hao Q Y, Zhang Y, et al. Fabrication of copper-based superhydrophobic surface by redox etching[J]. Science Technology and Engineering, 2013, 13(14): 3960-3962. | |
13 | Huang Y, Sarkar D K, Chen X G. Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties[J]. Applied Surface Science, 2015, 356: 1012-1024. |
14 | 吕公连, 贾晓峰. 分子自组装膜的应用研究[J]. 化学推进剂与高分子材料, 2001, (2): 9-12. |
Lyu G L, Jia X F. Research on application of molecular self-assembled membrane[J]. Chemical Propellants and Polymeric Materials, 2001, (2): 9-12. | |
15 | 都颖, 陈海杰, 成中军, 等. 分子自组装法制备具有可控浸润性的铜表面[J]. 高等学校化学学报, 2014, 35(1): 105-109. |
Du Y, Chen H J, Cheng Z J, et al. Preparation of copper surfaces with controlled wettability through the molecular self-assembling process [J]. Chemical Journal of Chinese Universities, 2014, 35(1): 105-109. | |
16 | Xi W J, Qiao Z M, Zhu C L, et al. The preparation of lotus-like super-hydrophobic copper surfaces by electroplating[J]. Applied Surface Science, 2009, 255(9): 4836-4839. |
17 | 曹凯, 张谦, 陈福明. 酸性镀铜法制备黄铜基超疏水表面[J]. 电镀与涂饰, 2014, 33(4): 137-141. |
Cao K, Zhang Q, Chen F M. Preparation of superhydrophobic brass surface by acidic copper plating[J]. Electroplating and Finishing, 2014, 33(4): 137-141. | |
18 | Song H J, Zhang Z Z, Men X H. Superhydrophobic PEEK/PTFE composite coating[J]. Applied Physics A: Materials Science and Processing, 2008, 91(1): 73-76. |
19 | 王海斌. 钢铁表面聚四氟乙烯功能涂层的制备及其性能研究[D]. 杭州: 浙江大学, 2015. |
Wang H B. Study on preparation of polytetrafluoroethylene function coatings on carbon steel surfaces and its performance[D]. Hangzhou: Zhejiang University, 2015. | |
20 | 李翔, 齐宝金, Nenad M, 等. 铜基纳米结构疏水表面冷凝传热实验研究[J]. 中国科技论文, 2017, 12(11): 1220-1224. |
Li X, Qi B J, Nenad M, et al. Experimental study on condensation heat transfer of copper-based nano-structure hydrophobic surfaces[J]. China Science Paper, 2017, 12(11): 1220-1224. | |
21 | 宋永吉, 任晓光, 任绍梅, 等. 水蒸气在超疏水表面上的冷凝传热[J]. 工程热物理学报, 2007, 28(1): 95-97. |
Song Y J, Ren X G, Ren S M, et al. Condensation heat transfer of steam on super-hydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2007, 28(1): 95-97. | |
22 | 齐隽楠, 吴嘉峰, 陈亚平. 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35(3): 11-14. |
Qi J N, Wu J F, Chen Y P. Experimental analysis on dropwise condensation of steam on hydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35(3): 11-14. | |
23 | Cheng J, Vandadi A, Chen C L. Condensation heat transfer on two-tier superhydrophobic surfaces[J]. Applied Physics Letters, 2012, 101(13): 131909. |
24 | Lan Z, Ma X H, Wang S F, et al. Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156(3): 546-552. |
25 | 张磊. 亲疏水表面相变传热的智能调控研究[D]. 北京: 中国科学院大学, 2019. |
Zhang L. Phase change heat transfer on surfaces with smartly-controllable wettability[D]. Beijing: University of Chinese Academy of Sciences, 2019. | |
26 | Chatterjee A, Derby M M, Peles Y, et al. Condensation heat transfer on patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 66: 889-897. |
27 | Chatterjee A, Derby M M, Peles Y, et al. Enhancement of condensation heat transfer with patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 71(4): 675-681. |
28 | Yang K S, Lin K H, Tu C W, et al. Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1032-1041. |
29 | Derby M M, Chatterjee A, Peles Y, et al. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns[J]. International Journal of Heat and Mass Transfer, 2014, 68: 151-160. |
30 | Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38. |
31 | Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794. |
32 | Ghosh A, Beaini S, Zhang B J, et al. Enhancing dropwise condensation through bioinspired wettability patterning[J]. Langmuir, 2014, 30(43): 13103-13115. |
33 | Mahapatra P S, Ghosh A, Ganguly R, et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J]. International Journal of Heat and Mass Transfer, 2016, 92: 877-883. |
34 | Lo C W, Chu Y C, Yen M H, et al. Enhancing condensation heat transfer on three-dimensional hybrid surfaces[J]. Joule, 2019, 3(11): 2806-2823. |
35 | Alwazzan M, Egab K, Peng B L, et al. Condensation on hybrid-patterned copper tubes (Ⅰ): Characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004. |
36 | Alwazzan M, Egab K, Peng B L, et al. Condensation on hybrid-patterned copper tubes (Ⅱ): Visualization study of droplet dynamics[J]. International Journal of Heat and Mass Transfer, 2017, 112: 950-958. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Wei SU, Dongxu MA, Xu JIN, Zhongyan LIU, Xiaosong ZHANG. Visual experimental study on effect of surface wettability on frost propagation characteristics [J]. CIESC Journal, 2023, 74(S1): 122-131. |
[3] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[4] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[5] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[6] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[7] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Xianheng YI, Wu ZHOU, Xiaoshu CAI, Tianyi CAI. Measurable range of nanoparticle concentration using optical fiber backward dynamic light scattering [J]. CIESC Journal, 2023, 74(8): 3320-3328. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||