1 |
Rose J W. Surface tension effects and enhancement of condensation heat transfer[J]. Chemical Engineering Research and Design, 2004, 82(4): 419-429.
|
2 |
唐媛, 宋佳, 白杨, 等. 滴状冷凝的实现方法研究进展[J]. 浙江大学学报(工学版), 2018, 52(2): 273-287, 332.
|
|
Tang Y, Song J, Bai Y, et al. Progress in implementation of dropwise condensation[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(2): 273-287, 332.
|
3 |
Castillo J E, Weibel J A, Garimella S V. The effect of relative humidity on dropwise condensation dynamics[J]. International Journal of Heat and Mass Transfer, 2015, 80: 759-766.
|
4 |
Torresin D, Tiwari M K, Del Col D, et al. Flow condensation on copper-based nanotextured superhydrophobic surfaces[J]. Langmuir, 2013, 29(2): 840-848.
|
5 |
Zhang S D, Zheng X L, Wang P, et al. Fabrication of super-hydrophobic micro-needle ZnO surface as corrosion barrier against corrosion in simulated condensation environment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124087.
|
6 |
Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18): 184501.
|
7 |
Liu T Q, Sun W, Sun X Y, et al. Mechanism study of condensed drops jumping on super-hydrophobic surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414: 366-374.
|
8 |
Qu X, Boreyko J B, Liu F, et al. Self-propelled sweeping removal of dropwise condensate[J]. Applied Physics Letters, 2015, 106(22): 221601.
|
9 |
Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
|
10 |
Chen L, Wang S Y, Xiang X, et al. Mechanism of surface nanostructure changing wettability: a molecular dynamics simulation[J]. Computational Materials Science, 2020, 171: 109223.
|
11 |
李书宏, 冯琳, 李欢军, 等. 柱状结构阵列碳纳米管膜的超疏水性研究[J]. 高等学校化学学报, 2003, 24(2): 340-342.
|
|
Li S H, Feng L, Li H J, et al. Super-hydrophobicity of post-like aligned carbon nanotube films[J]. Chemical Journal of Chinese Universities, 2003, 24(2): 340-342.
|
12 |
马福民, 郝全勇, 张燕, 等. 氧化还原法刻蚀制备铜基超疏水表面[J]. 科学技术与工程, 2013, 13(14): 3960-3962.
|
|
Ma F M, Hao Q Y, Zhang Y, et al. Fabrication of copper-based superhydrophobic surface by redox etching[J]. Science Technology and Engineering, 2013, 13(14): 3960-3962.
|
13 |
Huang Y, Sarkar D K, Chen X G. Superhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties[J]. Applied Surface Science, 2015, 356: 1012-1024.
|
14 |
吕公连, 贾晓峰. 分子自组装膜的应用研究[J]. 化学推进剂与高分子材料, 2001, (2): 9-12.
|
|
Lyu G L, Jia X F. Research on application of molecular self-assembled membrane[J]. Chemical Propellants and Polymeric Materials, 2001, (2): 9-12.
|
15 |
都颖, 陈海杰, 成中军, 等. 分子自组装法制备具有可控浸润性的铜表面[J]. 高等学校化学学报, 2014, 35(1): 105-109.
|
|
Du Y, Chen H J, Cheng Z J, et al. Preparation of copper surfaces with controlled wettability through the molecular self-assembling process [J]. Chemical Journal of Chinese Universities, 2014, 35(1): 105-109.
|
16 |
Xi W J, Qiao Z M, Zhu C L, et al. The preparation of lotus-like super-hydrophobic copper surfaces by electroplating[J]. Applied Surface Science, 2009, 255(9): 4836-4839.
|
17 |
曹凯, 张谦, 陈福明. 酸性镀铜法制备黄铜基超疏水表面[J]. 电镀与涂饰, 2014, 33(4): 137-141.
|
|
Cao K, Zhang Q, Chen F M. Preparation of superhydrophobic brass surface by acidic copper plating[J]. Electroplating and Finishing, 2014, 33(4): 137-141.
|
18 |
Song H J, Zhang Z Z, Men X H. Superhydrophobic PEEK/PTFE composite coating[J]. Applied Physics A: Materials Science and Processing, 2008, 91(1): 73-76.
|
19 |
王海斌. 钢铁表面聚四氟乙烯功能涂层的制备及其性能研究[D]. 杭州: 浙江大学, 2015.
|
|
Wang H B. Study on preparation of polytetrafluoroethylene function coatings on carbon steel surfaces and its performance[D]. Hangzhou: Zhejiang University, 2015.
|
20 |
李翔, 齐宝金, Nenad M, 等. 铜基纳米结构疏水表面冷凝传热实验研究[J]. 中国科技论文, 2017, 12(11): 1220-1224.
|
|
Li X, Qi B J, Nenad M, et al. Experimental study on condensation heat transfer of copper-based nano-structure hydrophobic surfaces[J]. China Science Paper, 2017, 12(11): 1220-1224.
|
21 |
宋永吉, 任晓光, 任绍梅, 等. 水蒸气在超疏水表面上的冷凝传热[J]. 工程热物理学报, 2007, 28(1): 95-97.
|
|
Song Y J, Ren X G, Ren S M, et al. Condensation heat transfer of steam on super-hydrophobic surfaces[J]. Journal of Engineering Thermophysics, 2007, 28(1): 95-97.
|
22 |
齐隽楠, 吴嘉峰, 陈亚平. 疏水表面蒸汽滴状冷凝传热实验分析[J]. 制冷技术, 2015, 35(3): 11-14.
|
|
Qi J N, Wu J F, Chen Y P. Experimental analysis on dropwise condensation of steam on hydrophobic surfaces[J]. Chinese Journal of Refrigeration Technology, 2015, 35(3): 11-14.
|
23 |
Cheng J, Vandadi A, Chen C L. Condensation heat transfer on two-tier superhydrophobic surfaces[J]. Applied Physics Letters, 2012, 101(13): 131909.
|
24 |
Lan Z, Ma X H, Wang S F, et al. Effects of surface free energy and nanostructures on dropwise condensation[J]. Chemical Engineering Journal, 2010, 156(3): 546-552.
|
25 |
张磊. 亲疏水表面相变传热的智能调控研究[D]. 北京: 中国科学院大学, 2019.
|
|
Zhang L. Phase change heat transfer on surfaces with smartly-controllable wettability[D]. Beijing: University of Chinese Academy of Sciences, 2019.
|
26 |
Chatterjee A, Derby M M, Peles Y, et al. Condensation heat transfer on patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 66: 889-897.
|
27 |
Chatterjee A, Derby M M, Peles Y, et al. Enhancement of condensation heat transfer with patterned surfaces[J]. International Journal of Heat and Mass Transfer, 2014, 71(4): 675-681.
|
28 |
Yang K S, Lin K H, Tu C W, et al. Experimental investigation of moist air condensation on hydrophilic, hydrophobic, superhydrophilic, and hybrid hydrophobic-hydrophilic surfaces[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1032-1041.
|
29 |
Derby M M, Chatterjee A, Peles Y, et al. Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns[J]. International Journal of Heat and Mass Transfer, 2014, 68: 151-160.
|
30 |
Peng B L, Ma X H, Lan Z, et al. Experimental investigation on steam condensation heat transfer enhancement with vertically patterned hydrophobic-hydrophilic hybrid surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 83: 27-38.
|
31 |
Peng B L, Ma X H, Lan Z, et al. Analysis of condensation heat transfer enhancement with dropwise-filmwise hybrid surface: droplet sizes effect[J]. International Journal of Heat and Mass Transfer, 2014, 77: 785-794.
|
32 |
Ghosh A, Beaini S, Zhang B J, et al. Enhancing dropwise condensation through bioinspired wettability patterning[J]. Langmuir, 2014, 30(43): 13103-13115.
|
33 |
Mahapatra P S, Ghosh A, Ganguly R, et al. Key design and operating parameters for enhancing dropwise condensation through wettability patterning[J]. International Journal of Heat and Mass Transfer, 2016, 92: 877-883.
|
34 |
Lo C W, Chu Y C, Yen M H, et al. Enhancing condensation heat transfer on three-dimensional hybrid surfaces[J]. Joule, 2019, 3(11): 2806-2823.
|
35 |
Alwazzan M, Egab K, Peng B L, et al. Condensation on hybrid-patterned copper tubes (Ⅰ): Characterization of condensation heat transfer[J]. International Journal of Heat and Mass Transfer, 2017, 112: 991-1004.
|
36 |
Alwazzan M, Egab K, Peng B L, et al. Condensation on hybrid-patterned copper tubes (Ⅱ): Visualization study of droplet dynamics[J]. International Journal of Heat and Mass Transfer, 2017, 112: 950-958.
|