CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2657-2668.DOI: 10.11949/0438-1157.20210084
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Received:
2021-01-13
Revised:
2021-03-24
Online:
2021-05-05
Published:
2021-05-05
Contact:
XING Enhui
通讯作者:
邢恩会
作者简介:
忻睦迪(1985—),男,博士研究生,高级工程师,CLC Number:
XIN Mudi, XING Enhui. Researches on trimethylphosphine and metal oxide modification on ZSM-5 and their influence on catalytic cracking[J]. CIESC Journal, 2021, 72(5): 2657-2668.
忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668.
原料及试剂 | 化学式 | 规格 | 生产厂家 |
---|---|---|---|
ZSM-5分子筛 | n(SiO2)∶n(Al2O3) = 43 | 工业级 | 中国石化催化剂公司齐鲁分公司 |
硝酸镓 | Ga(NO3)3·nH2O | 分析纯 | 阿法埃莎(中国)化学有限公司 |
六水合硝酸锌 | Zn(NO3)2·6H2O | 分析纯 | 国药集团 |
磷酸 | H3PO4 | 85% | 北京化工厂 |
三甲基膦 | C3H9P | 分析纯 | 阿法埃莎(中国)化学有限公司 |
正十四烷 | C14H30 | ≥ 99% | 阿法埃莎(中国)化学有限公司 |
Table 1 Raw materials in experiments
原料及试剂 | 化学式 | 规格 | 生产厂家 |
---|---|---|---|
ZSM-5分子筛 | n(SiO2)∶n(Al2O3) = 43 | 工业级 | 中国石化催化剂公司齐鲁分公司 |
硝酸镓 | Ga(NO3)3·nH2O | 分析纯 | 阿法埃莎(中国)化学有限公司 |
六水合硝酸锌 | Zn(NO3)2·6H2O | 分析纯 | 国药集团 |
磷酸 | H3PO4 | 85% | 北京化工厂 |
三甲基膦 | C3H9P | 分析纯 | 阿法埃莎(中国)化学有限公司 |
正十四烷 | C14H30 | ≥ 99% | 阿法埃莎(中国)化学有限公司 |
样品 | 相对结晶度(焙烧后)/% | 相对结晶度(水热老化后)/% | 相对结晶保留度/% |
---|---|---|---|
Z | 93.7 | 78.9 | 84.2 |
Z-TMP | 84.1 | 83.0 | 98.7 |
Z-TMP-G | 83.0 | 81.5 | 98.2 |
Z-TMP-Z | 80.0 | 68.9 | 86.1 |
Table 2 Relative crystallinities of TMP and metal oxide modified ZSM-5
样品 | 相对结晶度(焙烧后)/% | 相对结晶度(水热老化后)/% | 相对结晶保留度/% |
---|---|---|---|
Z | 93.7 | 78.9 | 84.2 |
Z-TMP | 84.1 | 83.0 | 98.7 |
Z-TMP-G | 83.0 | 81.5 | 98.2 |
Z-TMP-Z | 80.0 | 68.9 | 86.1 |
样品 | 焙烧后 | 水热老化后 | ||||
---|---|---|---|---|---|---|
SiO2/Al2O3 | P2O5/Al2O3 | SiO2/MxOy | SiO2/Al2O3 | P2O5/Al2O3 | SiO2/MxOy | |
Z-TMP | 42.1 | 0.98 | — | 42.7 | 0.89 | — |
Z-TMP-G | 42.7 | 0.94 | 195.0 | 44.1 | 0.93 | 207.4 |
Z-TMP-Z | 43.2 | 0.99 | 190.3 | 43.4 | 0.97 | 193.5 |
Table 3 Chemical composition of TMP and metal oxide modified ZSM-5
样品 | 焙烧后 | 水热老化后 | ||||
---|---|---|---|---|---|---|
SiO2/Al2O3 | P2O5/Al2O3 | SiO2/MxOy | SiO2/Al2O3 | P2O5/Al2O3 | SiO2/MxOy | |
Z-TMP | 42.1 | 0.98 | — | 42.7 | 0.89 | — |
Z-TMP-G | 42.7 | 0.94 | 195.0 | 44.1 | 0.93 | 207.4 |
Z-TMP-Z | 43.2 | 0.99 | 190.3 | 43.4 | 0.97 | 193.5 |
样品 | 焙烧后 | 水热老化后 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
比表面积/(m2/g) | 孔体积/(cm3/g) | 比表面积/(m2/g) | 孔体积 / (cm3/g) | |||||||||
SBET | Sext | Smicro | Vtotal | Vmicro | Vmeso | SBET | Sext | Smicro | Vtotal | Vmicro | Vmeso | |
Z | 420.0 | 35.2 | 384.8 | 0.242 | 0.198 | 0.044 | 294.0 | 15.8 | 278.2 | 0.156 | 0.131 | 0.025 |
Z-TMP | 254.0 | 21.3 | 232.7 | 0.137 | 0.112 | 0.025 | 307.7 | 16.5 | 291.2 | 0.160 | 0.137 | 0.023 |
Z-TMP-G | 244.4 | 20.4 | 224.0 | 0.132 | 0.105 | 0.027 | 307.8 | 16.1 | 291.7 | 0.160 | 0.138 | 0.022 |
Z-TMP-Z | 243.3 | 18.5 | 224.8 | 0.130 | 0.105 | 0.025 | 259.7 | 14.3 | 245.4 | 0.141 | 0.116 | 0.025 |
Table 4 Textual properties of TMP and metal oxide modified ZSM-5
样品 | 焙烧后 | 水热老化后 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
比表面积/(m2/g) | 孔体积/(cm3/g) | 比表面积/(m2/g) | 孔体积 / (cm3/g) | |||||||||
SBET | Sext | Smicro | Vtotal | Vmicro | Vmeso | SBET | Sext | Smicro | Vtotal | Vmicro | Vmeso | |
Z | 420.0 | 35.2 | 384.8 | 0.242 | 0.198 | 0.044 | 294.0 | 15.8 | 278.2 | 0.156 | 0.131 | 0.025 |
Z-TMP | 254.0 | 21.3 | 232.7 | 0.137 | 0.112 | 0.025 | 307.7 | 16.5 | 291.2 | 0.160 | 0.137 | 0.023 |
Z-TMP-G | 244.4 | 20.4 | 224.0 | 0.132 | 0.105 | 0.027 | 307.8 | 16.1 | 291.7 | 0.160 | 0.138 | 0.022 |
Z-TMP-Z | 243.3 | 18.5 | 224.8 | 0.130 | 0.105 | 0.025 | 259.7 | 14.3 | 245.4 | 0.141 | 0.116 | 0.025 |
样品 | 弱酸量/ (μmol/g) | 中强酸量/ (μmol/g) | 强酸量/ (μmol/g) | 总酸量/ (μmol/g) |
---|---|---|---|---|
Z-TMP-HT | 62.86 | 71.76 | 19.37 | 154.00 |
Z-TMP-G-HT | 66.17 | 70.95 | 28.84 | 165.96 |
Z-TMP-Z-HT | 78.78 | 71.38 | 20.62 | 170.78 |
Table 5 Acid amounts of TMP and metal oxide modified ZSM-5 (NH3-TPD)
样品 | 弱酸量/ (μmol/g) | 中强酸量/ (μmol/g) | 强酸量/ (μmol/g) | 总酸量/ (μmol/g) |
---|---|---|---|---|
Z-TMP-HT | 62.86 | 71.76 | 19.37 | 154.00 |
Z-TMP-G-HT | 66.17 | 70.95 | 28.84 | 165.96 |
Z-TMP-Z-HT | 78.78 | 71.38 | 20.62 | 170.78 |
样品 | 弱酸量/(μmol/g) | 中强酸量/(μmol/g) | 总酸量/(μmol/g) | |||
---|---|---|---|---|---|---|
L | B | L | B | L | B | |
Z-TMP-HT | 4.3 | 7.4 | 5.2 | 8.7 | 9.5 | 16.1 |
Z-TMP-G-HT | 6.4 | 10.9 | 5.9 | 7.2 | 12.3 | 18.1 |
Z-TMP-Z-HT | 9.3 | 8.0 | 4.0 | 8.4 | 13.3 | 16.4 |
Table 6 Acid amounts of TMP and metal oxide modified ZSM-5 (Py-FTIR)
样品 | 弱酸量/(μmol/g) | 中强酸量/(μmol/g) | 总酸量/(μmol/g) | |||
---|---|---|---|---|---|---|
L | B | L | B | L | B | |
Z-TMP-HT | 4.3 | 7.4 | 5.2 | 8.7 | 9.5 | 16.1 |
Z-TMP-G-HT | 6.4 | 10.9 | 5.9 | 7.2 | 12.3 | 18.1 |
Z-TMP-Z-HT | 9.3 | 8.0 | 4.0 | 8.4 | 13.3 | 16.4 |
项目 | Z-TMP-HT | Z-TMP-G-HT | Z-TMP-Z-HT | ZP-HT | ZP-G-HT | ZP-Z-HT[ |
---|---|---|---|---|---|---|
转化率/% | 93.9 | 98.4 | 97.5 | 97.3 | 87.3 | 97.8 |
收率/%(质量) | ||||||
H2 | 0.06 | 0.06 | 0.15 | 0.07 | 0.07 | 0.12 |
CH4 | 0.14 | 0.14 | 0.20 | 0.12 | 0.12 | 0.17 |
C2H6 | 0.48 | 0.49 | 0.51 | 0.43 | 0.44 | 0.51 |
C2H4 | 5.30 | 6.04 | 5.89 | 4.87 | 4.42 | 5.31 |
C3H8 | 10.65 | 12.61 | 12.06 | 11.47 | 10.36 | 12.44 |
C3H6 | 18.00 | 19.57 | 19.83 | 17.45 | 15.87 | 16.27 |
C4H10 | 9.09 | 11.65 | 11.30 | 11.53 | 9.75 | 11.78 |
C4H8 | 13.68 | 14.64 | 15.25 | 12.69 | 11.06 | 10.84 |
C5H12 | 6.55 | 6.61 | 6.05 | 12.11 | 9.67 | 11.33 |
C5H10 | 3.51 | 2.50 | 2.34 | 2.15 | 2.79 | 2.43 |
C6H14 | 1.33 | 1.33 | 1.22 | 1.24 | 1.35 | 1.29 |
C6H12 | 1.68 | 1.54 | 1.57 | 1.56 | 1.82 | 1.42 |
C7H16 | 0.65 | 0.72 | 0.70 | 0.73 | 0.73 | 0.65 |
C7H14 | 0.52 | 0.78 | 0.80 | 0.73 | 0.70 | 0.69 |
BTX | 2.16 | 2.48 | 2.57 | 2.61 | 3.00 | 3.76 |
C2=~C4=+BTX | 39.14 | 42.72 | 43.53 | 37.62 | 34.36 | 37.19 |
Coke | 2.89 | 3.16 | 4.42 | 5.91 | 3.23 | 5.49 |
选择性/%(质量) | ||||||
H2 | 0.06 | 0.06 | 0.15 | 0.07 | 0.08 | 0.13 |
CH4 | 0.15 | 0.14 | 0.20 | 0.12 | 0.14 | 0.17 |
C2H6 | 0.51 | 0.49 | 0.53 | 0.44 | 0.50 | 0.52 |
C2H4 | 5.65 | 6.14 | 6.04 | 5.01 | 5.06 | 5.43 |
C3H8 | 11.34 | 12.81 | 12.38 | 11.79 | 11.87 | 12.71 |
C3H6 | 19.17 | 19.88 | 20.34 | 17.93 | 18.18 | 16.63 |
C4H10 | 9.68 | 11.83 | 11.60 | 11.85 | 11.17 | 12.04 |
C4H8 | 14.57 | 14.88 | 15.64 | 13.04 | 12.67 | 11.08 |
C5H12 | 6.98 | 6.72 | 6.21 | 12.44 | 11.07 | 11.58 |
C5H10 | 3.74 | 2.54 | 2.40 | 2.21 | 3.19 | 2.48 |
C6H14 | 1.42 | 1.35 | 1.25 | 1.28 | 1.54 | 1.32 |
C6H12 | 1.79 | 1.57 | 1.61 | 1.60 | 2.08 | 1.45 |
C7H16 | 0.69 | 0.73 | 0.72 | 0.75 | 0.84 | 0.67 |
C7H14 | 0.55 | 0.79 | 0.82 | 0.75 | 0.80 | 0.71 |
BTX | 2.30 | 2.52 | 2.64 | 2.68 | 3.44 | 3.84 |
C2=~C4=+BTX | 41.68 | 43.41 | 44.67 | 38.66 | 39.35 | 38.03 |
Coke | 3.08 | 3.22 | 4.53 | 6.07 | 3.70 | 5.61 |
Table 7 The product distribution and selectivity of n-tetradecane over ZSM-5 catalysts
项目 | Z-TMP-HT | Z-TMP-G-HT | Z-TMP-Z-HT | ZP-HT | ZP-G-HT | ZP-Z-HT[ |
---|---|---|---|---|---|---|
转化率/% | 93.9 | 98.4 | 97.5 | 97.3 | 87.3 | 97.8 |
收率/%(质量) | ||||||
H2 | 0.06 | 0.06 | 0.15 | 0.07 | 0.07 | 0.12 |
CH4 | 0.14 | 0.14 | 0.20 | 0.12 | 0.12 | 0.17 |
C2H6 | 0.48 | 0.49 | 0.51 | 0.43 | 0.44 | 0.51 |
C2H4 | 5.30 | 6.04 | 5.89 | 4.87 | 4.42 | 5.31 |
C3H8 | 10.65 | 12.61 | 12.06 | 11.47 | 10.36 | 12.44 |
C3H6 | 18.00 | 19.57 | 19.83 | 17.45 | 15.87 | 16.27 |
C4H10 | 9.09 | 11.65 | 11.30 | 11.53 | 9.75 | 11.78 |
C4H8 | 13.68 | 14.64 | 15.25 | 12.69 | 11.06 | 10.84 |
C5H12 | 6.55 | 6.61 | 6.05 | 12.11 | 9.67 | 11.33 |
C5H10 | 3.51 | 2.50 | 2.34 | 2.15 | 2.79 | 2.43 |
C6H14 | 1.33 | 1.33 | 1.22 | 1.24 | 1.35 | 1.29 |
C6H12 | 1.68 | 1.54 | 1.57 | 1.56 | 1.82 | 1.42 |
C7H16 | 0.65 | 0.72 | 0.70 | 0.73 | 0.73 | 0.65 |
C7H14 | 0.52 | 0.78 | 0.80 | 0.73 | 0.70 | 0.69 |
BTX | 2.16 | 2.48 | 2.57 | 2.61 | 3.00 | 3.76 |
C2=~C4=+BTX | 39.14 | 42.72 | 43.53 | 37.62 | 34.36 | 37.19 |
Coke | 2.89 | 3.16 | 4.42 | 5.91 | 3.23 | 5.49 |
选择性/%(质量) | ||||||
H2 | 0.06 | 0.06 | 0.15 | 0.07 | 0.08 | 0.13 |
CH4 | 0.15 | 0.14 | 0.20 | 0.12 | 0.14 | 0.17 |
C2H6 | 0.51 | 0.49 | 0.53 | 0.44 | 0.50 | 0.52 |
C2H4 | 5.65 | 6.14 | 6.04 | 5.01 | 5.06 | 5.43 |
C3H8 | 11.34 | 12.81 | 12.38 | 11.79 | 11.87 | 12.71 |
C3H6 | 19.17 | 19.88 | 20.34 | 17.93 | 18.18 | 16.63 |
C4H10 | 9.68 | 11.83 | 11.60 | 11.85 | 11.17 | 12.04 |
C4H8 | 14.57 | 14.88 | 15.64 | 13.04 | 12.67 | 11.08 |
C5H12 | 6.98 | 6.72 | 6.21 | 12.44 | 11.07 | 11.58 |
C5H10 | 3.74 | 2.54 | 2.40 | 2.21 | 3.19 | 2.48 |
C6H14 | 1.42 | 1.35 | 1.25 | 1.28 | 1.54 | 1.32 |
C6H12 | 1.79 | 1.57 | 1.61 | 1.60 | 2.08 | 1.45 |
C7H16 | 0.69 | 0.73 | 0.72 | 0.75 | 0.84 | 0.67 |
C7H14 | 0.55 | 0.79 | 0.82 | 0.75 | 0.80 | 0.71 |
BTX | 2.30 | 2.52 | 2.64 | 2.68 | 3.44 | 3.84 |
C2=~C4=+BTX | 41.68 | 43.41 | 44.67 | 38.66 | 39.35 | 38.03 |
Coke | 3.08 | 3.22 | 4.53 | 6.07 | 3.70 | 5.61 |
1 | Rahimi N, Karimzadeh R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17. |
2 | Chen N Y, Kaeding W W, Dwyer F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts[J]. Journal of the American Chemical Society, 1979, 101(22): 6783-6784. |
3 | Degnan T F, Chitnis G K, Schipper P H. History of ZSM-5 fluid catalytic cracking additive development at Mobil[J]. Microporous and Mesoporous Materials, 2000, 35/36: 245-252. |
4 | Lischke G, Eckelt R, Jerschkewitz H G, et al. Spectroscopic and physicochemical characterization of P-modified H-ZSM-5[J]. Journal of Catalysis, 1991, 132(1): 229-243. |
5 | Caeiro G, Magnoux P, Lopes J M, et al. Stabilization effect of phosphorus on steamed H-MFI zeolites[J]. Applied Catalysis A: General, 2006, 314(2): 160-171. |
6 | Blasco T, Corma A, Martínez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2): 267-277. |
7 | Zhuang J Q, Ma D, Yang G, et al. Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking[J]. Journal of Catalysis, 2004, 228(1): 234-242. |
8 | van der Bij H E, Weckhuysen B M. Phosphorus promotion and poisoning in zeolite-based materials: synthesis, characterisation and catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7406-7428. |
9 | Wang X N, Zhao Z, Xu C M, et al. Effects of light rare earth on acidity and catalytic performance of HZSM-5 zeolite for catalytic cracking of butane to light olefins[J]. Journal of Rare Earths, 2007, 25(3): 321-328. |
10 | Hartford R W, Kojima M, O'Connor C T. Lanthanum ion exchange on HZSM-5[J]. Industrial & Engineering Chemistry Research, 1989, 28(12): 1748-1752. |
11 | Lu J Y, Zhao Z, Xu C M, et al. FeHZSM-5 molecular sieves—highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene[J]. Catalysis Communications, 2006, 7(4): 199-203. |
12 | Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane using double-stage reaction[J]. Applied Catalysis A: General, 2002, 230(1/2): 195-202. |
13 | Li Y N, Liu D, Liu S L, et al. Thermal and hydrothermal stabilities of the alkali-treated HZSM-5 zeolites[J]. Journal of Natural Gas Chemistry, 2008, 17(1): 69-74. |
14 | Wakui K, Satoh K, Sawada G, et al. Dehydrogenative cracking of n-butane over modified HZSM-5 catalysts[J]. Catalysis Letters, 2002, 81(1/2): 83-88. |
15 | Li J W, Li T, Ma H F, et al. Effect of impregnating Fe into P-modified HZSM-5 in the coupling cracking of butene and pentene[J]. Industrial & Engineering Chemistry Research, 2015, 54(6): 1796-1805. |
16 | Han D M, Sun N N, Liu J W, et al. Synergistic effect of W and P on ZSM-5 and its catalytic performance in the cracking of heavy oil[J]. Journal of Energy Chemistry, 2014, 23(4): 519-526. |
17 | Yoshimura Y, Kijima N, Hayakawa T, et al. Catalytic cracking of naphtha to light olefins[J]. Catalysis Surveys from Japan, 2001, 4(2): 157-167. |
18 | Sendesi S M T, Towfighi J, Keyvanloo K. The effect of Fe, P and Si/Al molar ratio on stability of HZSM-5 catalyst in naphtha thermal-catalytic cracking to light olefins[J]. Catalysis Communications, 2012, 27: 114-118. |
19 | Valecillos J, Epelde E, Albo J, et al. Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications[J]. Catalysis Today, 2020, 348: 243-256. |
20 | Tsunoji N, Sonoda T, Furumoto Y, et al. Recreation of Brønsted acid sites in phosphorus-modified HZSM-5(Ga) by modification with various metal cations[J]. Applied Catalysis A: General, 2014, 481: 161-168. |
21 | Furumoto Y, Tsunoji N, Ide Y, et al. Conversion of ethanol to propylene over HZSM-5(Ga) co-modified with lanthanum and phosphorous[J]. Applied Catalysis A: General, 2012, 417/418: 137-144. |
22 | Qiao J, Wang J Q, Frenkel A I, et al. Methanol to aromatics: isolated zinc phosphate groups on HZSM-5 zeolite enhance BTX selectivity and catalytic stability[J]. RSC Advances, 2020, 10(10): 5961-5971. |
23 | Zhang J Y, Zhu X L, Zhang S H, et al. Selective production of para-xylene and light olefins from methanol over the mesostructured Zn–Mg–P/ZSM-5 catalyst[J]. Catalysis Science & Technology, 2019, 9(2): 316-326. |
24 | Xin M D, Xing E H, Ouyang Y, et al. Insight into interactions among P, Zn and ZSM-5 during bi-component modification on ZSM-5[J]. New Journal of Chemistry, 2020, 44(47): 20785-20796. |
25 | Vinek H, Rumplmayr G, Lercher J A. Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites[J]. Journal of Catalysis, 1989, 115(2): 291-300. |
26 | Xue N H, Olindo R, Lercher J A. Impact of forming and modification with phosphoric acid on the acid sites of HZSM-5[J]. The Journal of Physical Chemistry C, 2010, 114(37): 15763-15770. |
27 | Nunan J, Cronin J, Cunningham J. Combined catalytic and infrared study of the modification of H-ZSM-5 with selected poisons to give high p-xylene selectivity[J]. Journal of Catalysis, 1984, 87(1): 77-85. |
28 | Rahman A, Lemay G, Adnot A, et al. Spectroscopic and catalytic study of P-modified ZSM-5[J]. Journal of Catalysis, 1988, 112(2): 453-463. |
29 | Zheng A M, Liu S B, Deng F. 31P NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts[J]. Chemical Reviews, 2017, 117(19): 12475-12531. |
30 | Xin M D, Xing E H, Gao X Z, et al. Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 6970-6981. |
[1] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[2] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[3] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[4] | Sheng CHEN, Mengke WANG, Bona LU, Xiufeng LI, Cenfan LIU, Mengxi LIU, Yiping FAN, Chunxi LU. CFD investigation of effects of feedstock oil vaporization on FCC cracking reaction and coking [J]. CIESC Journal, 2022, 73(7): 2982-2995. |
[5] | Liyuan LI, Jianqiang WANG, Yi CHEN, Youdi GUO, Jian ZHOU, Zhicheng LIU, Yangdong WANG, Zaiku XIE. Study on the mesoscale mechanism of coking and deactivation of ZSM-5 catalyst in methanol to propylene reaction [J]. CIESC Journal, 2022, 73(6): 2669-2676. |
[6] | Xiaogang SHI, Chengxiu WANG, Jinsen GAO, Xingying LAN. Numerical simulation study on influence of mesoscale structure in riser reactor [J]. CIESC Journal, 2022, 73(6): 2708-2721. |
[7] | Jingxiao WANG, Xiangyu HE, Jianhong GONG, Jianliang XU, Haifeng LIU. Experimental study on solids concentration in novel fast fluidized bed for catalytic cracking [J]. CIESC Journal, 2021, 72(8): 4104-4110. |
[8] | LI Xiaoxue, NIU Xiaopo, WANG Qingfa. Study on hydrodeoxygenation performance of hierarchical Pt-Ni/ZSM-5 for lignin derivatives [J]. CIESC Journal, 2021, 72(5): 2626-2637. |
[9] | ZHANG Yuming, JI Dexin, ZHU Hanwen, WAN Lifeng, ZHANG Wei, WEN Hongyan, YUE Junrong. Reaction kinetics of naphthalene cracking into small molecule gas in a micro fluidized bed [J]. CIESC Journal, 2021, 72(5): 2604-2615. |
[10] | ZHANG Rui, SHAO Qi, ZHANG Huayu, JIN Zelong, ZHANG Xiaoliang. Fabrication of boron-doped hybrid silica membranes for pervaporation desalination [J]. CIESC Journal, 2021, 72(4): 2317-2327. |
[11] | Zhen YANG, Jingpei CAO, Chen ZHU, Tianlong LIU, Xiaoyan ZHAO. Catalytic conversion of lignite pyrolysis volatiles for enriching light aromatics over B-ZSM-5 [J]. CIESC Journal, 2021, 72(11): 5633-5642. |
[12] | Xueyu REN, Jingpei CAO, Naiyu YAO, Xiaoyan ZHAO, Xiaobo FENG, Tianlong LIU, Yunpeng ZHAO. Turning hierarchical ZSM-5 by template methods and its application in catalyzing lignite-derived volatiles to light aromatics [J]. CIESC Journal, 2021, 72(11): 5620-5632. |
[13] | Ziyi LI,Enze PAN,Jiaxuan WANG,Jinming LU,Jianhua YANG. Preparation of ZSM-5 zeolite membrane and its application in desalination [J]. CIESC Journal, 2021, 72(10): 5247-5256. |
[14] | Wei WANG, Xueying JIANG, Yue LI, Liping SU, Yun ZOU, Zhangfa TONG. Application of PVA membrane filled with hydrophilic ZSM-5 molecular sieve on separation of water from ethyl acetate [J]. CIESC Journal, 2020, 71(8): 3807-3818. |
[15] | Lin ZHU, Wei HAN, Wensong LI, Changcheng WU, Fang LI, Wei XUE, Yanji WANG. Highly selective hydrolyzation of cyclohexyl acetate over HZSM-5 assisted by [BMIm]Br ionic liquid [J]. CIESC Journal, 2020, 71(4): 1609-1617. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 339
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 475
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||