CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2706-2717.DOI: 10.11949/0438-1157.20201340
• Separation engineering • Previous Articles Next Articles
HOU Yongjun1(),ZHU Jingtao1(),LI Huachuan2,WU Xianjin3,JIANG Rui2
Received:
2020-09-21
Revised:
2020-12-20
Online:
2021-05-05
Published:
2021-05-05
Contact:
ZHU Jingtao
通讯作者:
祝敬涛
作者简介:
侯勇俊(1967—),男,博士,教授,基金资助:
CLC Number:
HOU Yongjun, ZHU Jingtao, LI Huachuan, WU Xianjin, JIANG Rui. DEM numerical simulation on rotary vibrating screen under balanced motion[J]. CIESC Journal, 2021, 72(5): 2706-2717.
侯勇俊, 祝敬涛, 李华川, 吴先进, 蒋锐. 均衡运动旋转振动筛DEM数值模拟[J]. 化工学报, 2021, 72(5): 2706-2717.
Add to citation manager EndNote|Ris|BibTeX
m0/kg | r/m | M/kg | ω/(rad·s-1) | k/(N·m)-1 |
---|---|---|---|---|
3 | 0.1 | 150 | 148 | 156000 |
l1/m | l2/m | Jz/(kg·m2) | J/(kg·m2) | c/(N·m·rad-1) |
0.23 | 0.29 | 0.188 | 48.23 | 18126 |
Table 1 System parameters of single motor rotary vibrating screen
m0/kg | r/m | M/kg | ω/(rad·s-1) | k/(N·m)-1 |
---|---|---|---|---|
3 | 0.1 | 150 | 148 | 156000 |
l1/m | l2/m | Jz/(kg·m2) | J/(kg·m2) | c/(N·m·rad-1) |
0.23 | 0.29 | 0.188 | 48.23 | 18126 |
Working condition | α/rad | A/mm | θ/rad | δ/rad |
---|---|---|---|---|
1 | 0.000 | 4.199 | -0.005 | 1.571 |
2 | 0.262 | 4.163 | -0.005 | 1.533 |
3 | 0.524 | 4.056 | -0.005 | 1.495 |
4 | 0.785 | 3.880 | -0.005 | 1.454 |
5 | 1.047 | 3.637 | -0.005 | 1.408 |
Table 2 Simulation parameters of single motor rotary vibrating screen
Working condition | α/rad | A/mm | θ/rad | δ/rad |
---|---|---|---|---|
1 | 0.000 | 4.199 | -0.005 | 1.571 |
2 | 0.262 | 4.163 | -0.005 | 1.533 |
3 | 0.524 | 4.056 | -0.005 | 1.495 |
4 | 0.785 | 3.880 | -0.005 | 1.454 |
5 | 1.047 | 3.637 | -0.005 | 1.408 |
Working condition | θz/rad | Az/mm |
---|---|---|
1 | 0.021 | 1.029 |
2 | 0.021 | 1.021 |
3 | 0.020 | 0.997 |
4 | 0.019 | 0.958 |
5 | 0.018 | 0.903 |
Table 3 Simulation parameters of rotary vibrating screen under balanced motion
Working condition | θz/rad | Az/mm |
---|---|---|
1 | 0.021 | 1.029 |
2 | 0.021 | 1.021 |
3 | 0.020 | 0.997 |
4 | 0.019 | 0.958 |
5 | 0.018 | 0.903 |
Parameter | Particle | Rotary vibrating screen |
---|---|---|
Poisson's ratio | 0.2 | 0.3 |
shear modulus /Pa | 5×107 | 7×1010 |
solids density /(kg·m-3) | 2600 | 7800 |
Table 4 Material characteristic parameter
Parameter | Particle | Rotary vibrating screen |
---|---|---|
Poisson's ratio | 0.2 | 0.3 |
shear modulus /Pa | 5×107 | 7×1010 |
solids density /(kg·m-3) | 2600 | 7800 |
Parameter | Particle to particle | Particle to rotary vibrating screen |
---|---|---|
coefficient of restitution | 0.003 | 0.4 |
static friction coefficient | 0.3 | 0.5 |
rolling friction coefficient | 0.010 | 0.002 |
Table 5 Collision characteristic parameter
Parameter | Particle to particle | Particle to rotary vibrating screen |
---|---|---|
coefficient of restitution | 0.003 | 0.4 |
static friction coefficient | 0.3 | 0.5 |
rolling friction coefficient | 0.010 | 0.002 |
Parameter | Particle | ||
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | d/a=1.0—3.0 | |
diameter /mm | 2.4 | 3.4 | 5.0 |
number of particles /s-1 | 500 | 1000 | 3500 |
percentage /% | 10 | 20 | 70 |
Table 6 The initial size distribution on particles
Parameter | Particle | ||
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | d/a=1.0—3.0 | |
diameter /mm | 2.4 | 3.4 | 5.0 |
number of particles /s-1 | 500 | 1000 | 3500 |
percentage /% | 10 | 20 | 70 |
Working condition | Solid phase screening efficiency/% | Particle screening rate/% | |
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | ||
1 | 82.67 | 98.00 | 75.00 |
2 | 80.87 | 97.40 | 72.60 |
3 | 83.00 | 98.40 | 75.30 |
4 | 86.53 | 99.40 | 80.10 |
5 | 88.60 | 99.60 | 83.10 |
Table 7 Solid phase screening efficiency and particle screening rate of rotary vibrating screen under normal motion
Working condition | Solid phase screening efficiency/% | Particle screening rate/% | |
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | ||
1 | 82.67 | 98.00 | 75.00 |
2 | 80.87 | 97.40 | 72.60 |
3 | 83.00 | 98.40 | 75.30 |
4 | 86.53 | 99.40 | 80.10 |
5 | 88.60 | 99.60 | 83.10 |
Working condition | Solid phase screening efficiency/% | Particle screening rate/% | |
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | ||
1 | 90.27 | 98.60 | 86.10 |
2 | 89.60 | 99.40 | 84.70 |
3 | 90.07 | 97.80 | 86.20 |
4 | 91.53 | 99.00 | 87.80 |
5 | 93.47 | 99.20 | 90.60 |
Table 8 Solid phase screening efficiency and particle screening rate of rotary vibrating screen under balanced motion
Working condition | Solid phase screening efficiency/% | Particle screening rate/% | |
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | ||
1 | 90.27 | 98.60 | 86.10 |
2 | 89.60 | 99.40 | 84.70 |
3 | 90.07 | 97.80 | 86.20 |
4 | 91.53 | 99.00 | 87.80 |
5 | 93.47 | 99.20 | 90.60 |
Condition | Solid phase screening efficiency/% | Particle screening rate/% | |
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | ||
d=6 mm(normal motion) | 84.13 | 98.60 | 76.90 |
d=6 mm(balanced motion) | 91.93 | 98.20 | 88.80 |
d=8 mm(normal motion) | 85.53 | 99.20 | 78.70 |
d=8 mm(balanced motion) | 91.53 | 99.60 | 87.50 |
Table 9 Solid phase screening efficiency and particle screening rate of rotary vibrating screen under different aperture size (working condition 3)
Condition | Solid phase screening efficiency/% | Particle screening rate/% | |
---|---|---|---|
d/a=0.5—0.7 | d/a=0.7—1.0 | ||
d=6 mm(normal motion) | 84.13 | 98.60 | 76.90 |
d=6 mm(balanced motion) | 91.93 | 98.20 | 88.80 |
d=8 mm(normal motion) | 85.53 | 99.20 | 78.70 |
d=8 mm(balanced motion) | 91.53 | 99.60 | 87.50 |
1 | Jiang J, Liu S Y, Wen B C. Dynamics analysis, selection and calculation on the parameters of a rotary vibrating screen[J]. Transactions of the Canadian Society for Mechanical Engineering, 2016, 40(4): 563-573. |
2 | Winistorfer P M. A concentric rotary laboratory screen for wood particle classification[J]. Europe PMC, 1985, 35(3): 39-41. |
3 | 段新豪, 张春华. 摇摆筛的发展现状及趋势[J]. 中国粉体技术, 2014, 20(5): 81-83. |
Duan X H, Zhang C H. Current technical status and future prospects of tumbler screening machines[J]. China Powder Science and Technology, 2014, 20(5): 81-83. | |
4 | Pocwiardowski W, Wodzinski P. Biological material sieving in rotary screen[J]. Rocznik Ochrona Srodowiska, 2011, 13(5): 1115-1131. |
5 | 侯彤. 旋振筛在粉体加工中的应用实践[J]. 现代经济信息, 2015, (16): 336. |
Hou T. Spin vibration sieve practice in powder processing[J]. Modern Economic Information, 2015, (16): 336. | |
6 | Bellocq B, Ruiz T, Delaplace G, et al. Screening efficiency and rolling effects of a rotating screen drum used to process wet soft agglomerates[J]. Journal of Food Engineering, 2017, 195: 235-246. |
7 | Djoković J M, Tanikić D I, Nikolić R R, et al. Screening efficiency analysis of vibrosieves with the circular vibrations[J]. Civil and Environmental Engineering, 2017, 13(1): 77-83. |
8 | Wang G F, Tong X. Screening efficiency and screen length of a linear vibrating screen using DEM 3D simulation[J]. Mining Science and Technology (China), 2011, 21(3): 451-455. |
9 | Grozubinsky V, Sultanovitch E, Lin I J. Efficiency of solid particle screening as a function of screen slot size, particle size, and duration of screening: the theoretical approach[J]. International Journal of Mineral Processing, 1998, 52(4): 261-272. |
10 | Jafari A, Nezhad V S. Employing DEM to study the impact of different parameters on the screening efficiency and mesh wear[J]. Powder Technology, 2016, 297: 126-143. |
11 | Dong K J, Esfandiary A H, Yu A B. Discrete particle simulation of particle flow and separation on a vibrating screen: effect of aperture shape[J]. Powder Technology, 2017, 314: 195-202. |
12 | 陈亚哲, 姚红良, 刘刚. 振动参数对筛分效率影响的实验研究[J]. 东北大学学报(自然科学版), 2019, 40(8): 1122-1126. |
Chen Y Z, Yao H L, Liu G. Experimental study on influence of vibration parameters on screening efficiency[J]. Journal of Northeastern University (Natural Science), 2019, 40(8): 1122-1126. | |
13 | 杜逸穹. 旋振筛筛分过程的DEM仿真研究[D]. 沈阳: 东北大学, 2011. |
Du Y Q. Research on DEM simulation of spin vibration screening process[D]. Shenyang: Northeastern University, 2011. | |
14 | Alkhaldi H, Eberhard P. Particle screening phenomena in an oblique multi-level tumbling reservoir: a numerical study using discrete element simulation[J]. Granular Matter, 2007, 9(6): 415-429. |
15 | Lawinska K, Modrzewski R. Analysis of sieve holes blocking in a vibrating screen and a rotary and drum screen[J]. Physicochemical Problems of Mineral Processing, 2017, 53(2): 812-828. |
16 | 董杏昕, 卢亚平, 廖波兰. 胶粉生产用旋振筛的关键技术研究[J]. 矿冶, 2016, 25(2): 62-66. |
Dong X X, Lu Y P, Liao B L. Key technical study of circular vibratory screener for gum powder production[J]. Mining and Metallurgy, 2016, 25(2): 62-66. | |
17 | 杨晋. 基于煤样筛分的筛上物料动态特性研究[D]. 太原: 中北大学, 2017. |
Yang J. Study on dynamic characteristics of material on sieves based on the screening of coal samples[D]. Taiyuan: North University of China, 2017. | |
18 | 闫宏伟, 汪洋, 马建强, 等. 新型旋振筛电动机转速对物料运动特性的影响分析[J]. 煤炭科学技术, 2018, 46(3): 148-154. |
Yan H W, Wang Y, Ma J Q, et al. Analysis on new motor speed of rotary vibration screen affected to material kinematic characteristics[J]. Coal Science and Technology, 2018, 46(3): 148-154. | |
19 | Sobolev G P. Effect of the parameters of a rotary-vibration (gyratory) screen on its performance[J]. Glass and Ceramics, 1963, 20(6): 323-327. |
20 | 赵平, 邱允武, 胡建国, 等. Q20湿式标准筛旋振筛机的研制及应用[J]. 有色金属(选矿部分), 2020, (2): 104-109. |
Zhao P, Qiu Y W, Hu J G, et al. Research and application on Q20 standardized wet vibrating screen machine[J]. Nonferrous Metals (Mineral Processing Section), 2020, (2): 104-109. | |
21 | 谭海军. 旋转筛刚柔耦合动力学研究[D]. 成都: 西南石油大学, 2019. |
Tan H J. Research on the dynamics of rigid-flexible coupling of rotary vibrating screen[D]. Chengdu: Southwest Petroleum University, 2019. | |
22 | 侯勇俊, 谭海军, 方潘, 等. 双激振电机驱动旋转振动筛系统的同步理论研究[J]. 振动与冲击, 2019, 38(7): 179-185. |
Hou Y J, Tan H J, Fang P, et al. Self-synchronization theory for rotary vibrating screen systems driven by two motors[J]. Journal of Vibration and Shock, 2019, 38(7): 179-185. | |
23 | 张强, 赵光红, 王军. 提高XZS-(1.2)M型旋振筛生产效率研究[J]. 硅谷, 2014, 7(10): 187-188. |
Zhang Q, Zhao G H, Wang J. Research on improving the production efficiency of rotary vibrating screen with XZS-(1.2)M type[J]. Silicon Valley, 2014, 7(10): 187-188. | |
24 | 洛传锋, 邓淑娟. 圆形转动盘离心式振动筛分机: 104275296A[P]. 2015-01-14. |
Luo C F, Deng S J. A rotary vibrating screen with a circular rotary centrifugal disk: 104275296A[P]. 2015-01-14. | |
25 | 朱宏政, 刘令云, 朱金波, 等. 旋转振动筛分机: 104353608[P]. 2016-01-06. |
Zhu H Z, Liu L Y, Zhu J B, et al. A rotary vibrating screen: 104353608[P]. 2016-01-06. | |
26 | 王泳嘉, 邢纪波. 离散单元法及其在岩土力学中的应用[M]. 沈阳: 东北工学院出版社, 1991. |
Wang Y J, Xing J B. Discrete Element Method and Its Application in Geomediology[M]. Shenyang: Northeastern University Press, 1991. | |
27 | Gan J Q, Yu A B. DEM simulation of the packing of cylindrical particles[J]. Granular Matter, 2020, 22(1): 1-19. |
28 | Wu X Q, Li Z F, Xia H H, et al. Vibration parameter optimization of a linear vibrating banana screen using DEM 3D simulation[J]. Journal of Engineering and Technological Sciences, 2018, 50(3): 346-363. |
29 | Davoodi A, Bengtsson M, Hulthén E, et al. Effects of screen decks' aperture shapes and materials on screening efficiency[J]. Minerals Engineering, 2019, 139: 105699. |
30 | Chen B, Yan J W, Mo W, et al. DEM simulation and experimental study on the screening process of elliptical vibration mechanical systems[J]. Journal of Vibroengineering, 2019, 21(8): 2025-2038. |
31 | Qiao J P, Duan C L, Jiang H S, et al. Research on screening mechanism and parameters optimization of equal thickness screen with variable amplitude based on DEM simulation[J]. Powder Technology, 2018, 331: 296-309. |
32 | 胡华文. 圆形泥浆振动筛的动力学研究[D]. 南充: 西南石油学院, 1990. |
Hu H W. A study of dynamics for the round shale shaker[D]. Nanchong: Southwest Petroleum University, 1990. | |
33 | Cleary P W. DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills[J]. Powder Technology, 2000, 109(1/2/3): 83-104. |
34 | Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics, 1953, 38(20): 327-334. |
35 | Campbell C S. Stress-controlled elastic granular shear flows[J]. Journal of Fluid Mechanics, 2005, 539: 273. |
36 | 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究[J]. 物理学报, 2009, 58(3): 1812-1818. |
Zhao Y Z, Jiang M Q, Zheng J Y. Discrete element simulation of the segregation in Brazil nut problem[J]. Acta Physica Sinica, 2009, 58(3): 1812-1818. | |
37 | 鲍春永. 基于DEM的振动筛分过程机理研究[D]. 北京: 中国矿业大学, 2016. |
Bao C Y. Study on vibrating screening process mechanism basing on DEM[D]. Beijing: China University of Mining and Technology, 2016. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[8] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[9] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[10] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[11] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[12] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[13] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[14] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[15] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||