1 |
Martin-Martinez M, Barreiro M F F, Silva A M T, et al. Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution[J]. Appl. Catal. B: Environ., 2017, 219: 372-378.
|
2 |
Guo Y P, Zeng Z Q, Liu Y J, et al. One-pot synthesis of sulfur doped activated carbon as a superior metal-free catalyst for the adsorption and catalytic oxidation of aqueous organics[J]. J. Mater. Chem. A, 2018, 6: 4055-4067.
|
3 |
Rosas J M, Ruiz-Rosas R, Rodríguez-Mirasol J, et al. Kinetic study of SO2 removal over lignin-based activated carbon[J]. Chem. Eng. J., 2017, 307: 707-721.
|
4 |
Qiu D P, Guo N N, Gao A, et al. Preparation of oxygen-enriched hierarchically porous carbon by KMnO4 one-pot oxidation and activation: mechanism and capacitive energy storage[J]. Electrochim. Acta, 2019, 294: 398-405.
|
5 |
Forouzesh M, Ebadi A, Aghaeinejad-Meybodi A. Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator[J]. Sep. Purif. Technol., 2019, 210: 145-151.
|
6 |
González-García P. Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications[J]. Renew. Sust. Energ. Rev., 2018, 82: 1393-1414.
|
7 |
Islam M T, Saenz-Arana R, Hernandez C, et al. Adsorption of methylene blue and tetracycline onto biomass-based material prepared by sulfuric acid reflux[J]. RSC Adv., 2018, 8: 32545-32557.
|
8 |
Shrotri A, Kobayashi H, Fukuoka A. Air oxidation of activated carbon to synthesize a biomimetic catalyst for hydrolysis of cellulose[J]. ChemSusChem., 2016, 9: 1299-1303.
|
9 |
Ternero-Hidalgo J J, Rosas J M, Palomo J, et al. Functionalization of activated carbons by HNO3 treatment: influence of phosphorus surface groups[J]. Carbon, 2016, 101: 409-419.
|
10 |
Huang C C, Chen H M, Chen C H, et al. Effect of surface oxides on hydrogen storage of activated carbon[J]. Sep. Purif. Technol., 2010, 70: 291-295.
|
11 |
Gokce Y, Aktas Z. Nitric acid modification of activated carbon produced from waste tea and adsorption of Methylene Blue and phenol[J]. Appl. Surf. Sci., 2014, 313: 352-359.
|
12 |
Shim J W, Park S J, Ryu S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon, 2001, 39: 1635-1642.
|
13 |
Forouzesh M, Ebadi A, Aghaeinejad-Meybodi A, et al. Transformation of persulfate to free sulfate radical over granular activated carbon: effect of acidic oxygen functional groups[J]. Chem. Eng. J., 2019, 374: 965-974.
|
14 |
Kampouraki Z C, Giannakoudakis D A, Triantafyllidis K S, et al. Catalytic oxidative desulfurization of a 4, 6-DMDBT containing model fuel by metal-free activated carbons: the key role of surface chemistry[J]. Green Chem., 2019, 21: 6685-6698.
|
15 |
Liu S X, Chen X, Chen X Y, et al. Activated carbon with excellent chromium(Ⅵ) adsorption performance prepared by acid-base surface modification[J]. J. Hazard. Mater., 2007, 141: 315-319.
|
16 |
Biniak S, Szymański G, Siedlewski J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997, 35(12): 1799-1810.
|
17 |
华中师范大学, 东北师范大学, 陕西师范大学, 北京师范大学. 分析化学: 上册[M]. 3版. 北京: 高等教育出版社, 2001: 136-138.
|
|
Central China Normal University, Northeast Normal University, Shaanxi Normal University, Beijing Normal University. Analytical Chemistry: First Volume [M]. 3nd ed. Beijing: Higher Education Press, 2001: 136-138.
|
18 |
Toda M, Takagaki A, Okamura M, et al. Green chemistry: biodiesel made with sugar catalyst[J]. Nature, 2005, 438: 178.
|
19 |
Wang J, Xu W, Ren J, et al. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid[J]. Green Chem., 2011, 13(10): 2678-2681.
|
20 |
Dural M U, Cavas L, Papageorgiou S K, et al. Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: kinetics and equilibrium studies[J]. Chem. Eng. J., 2011, 168(1): 77-85.
|
21 |
Xie J K, Han Q N, Feng B, et al. Preparation of amphiphilic mesoporous carbon-based solid acid from kraft lignin activated by phosphoric acid and its catalytic performance for hydration of α-pinene[J]. Bioresources, 2019, 14(2): 4284-4303.
|
22 |
张冠中, 赵师辛, 陈梦涵, 等. 碱木质素基活性炭的制备与孔结构特征[J]. 林业机械与木工设备, 2017, 45(2): 35-39.
|
|
Zhang G Z, Zhao S X, Chen M H, et al. Preparation and pore features of soda lignin-based activated carbon[J]. Forestry Machinery & Woodworking Equipment, 2017, 45(2): 35-39.
|
23 |
卫建, 彭绍军, 杨刚, 等. 玉米秸秆黑液木质素制备活性炭的研究[J]. 中华纸业, 2007, 28(11): 60-62.
|
|
Wei J, Peng S J, Yang G, et al. A study of the preparation of activated carbon from corn stalk black liquor lignin[J]. China Pulp & Paper Industry, 2007, 28(11): 60-62.
|
24 |
Zhu X Q, Yu S, Xu K T, et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials[J]. Chem. Eng. Sci., 2018, 181: 36-45.
|
25 |
Banerjee S, Chattopadhyaya M C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product[J]. Arab. J. Chem., 2017, 10: S1629-S1638.
|
26 |
Pereira M F R, Soares S F, Órfão J J M, et al. Adsorption of dyes on activated carbons: influence of surface chemical groups[J]. Carbon, 2003, 41(4): 811-821.
|
27 |
Kazmierczak-Razna J, Nowicki P, Wiśniewska M, et al. Thermal and physicochemical properties of phosphorus-containing activated carbons obtained from biomass[J]. J. Taiwan Inst. Chem. E., 2017, 80: 1006-1013.
|
28 |
Xie R C, Qu B J, Hu K L. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends[J]. Polym. Degrad. Stabil., 2001, 72(2): 313-321.
|
29 |
Shin H S, Kim J H. Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20[J]. Process Biochem., 2016, 51(7): 917-924.
|
30 |
Li Y X, Zhang X, Yang R G, et al. The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue[J]. RSC Adv., 2015, 5: 32626-32636.
|
31 |
蒋剑春. 活性炭制造与应用技术[M]. 北京: 化学工业出版社, 2017: 25-27.
|
|
Jiang J C. Manufacturing and Application Technology of Activated Carbon[M]. Beijing: Chemical Industry Press, 2017: 25-27.
|
32 |
Yu Y, Qiao N, Wang D J, et al. Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes[J]. Bioresource Technol., 2019, 285: 121340.
|
33 |
Liu M Y, Li X Y, Du Y Y, et al. Adsorption of methyl blue from solution using walnut shell and reuse in a secondary adsorption for Congo red[J]. Bioresource Technol. Rep., 2019, 5: 238-242.
|
34 |
Bedin K C, Souza I P A F, Cazetta A L, et al. CO2-spherical activated carbon as a new adsorbent for methylene blue removal: kinetic, equilibrium and thermodynamic studies[J]. J. Mol. Liq., 2018, 269: 132-139.
|
35 |
Asuquo E, Martin A, Nzerem P, et al. Adsorption of Cd (Ⅱ) and Pb (Ⅱ) ions from aqueous solutions using mesoporous activated carbon adsorbent: equilibrium, kinetics and characterisation studies[J]. J. Environ. Chem. Eng., 2017, 5(1): 679-698.
|
36 |
Liang Q W, Luo H J, Geng J J, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (Ⅵ)[J]. Chem. Eng. J., 2018, 338: 62-71.
|
37 |
Luo Y P, Li R L, Sun X Y, et al. The roles of phosphorus species formed in activated biochar from rice husk in the treatment of landfill leachate[J]. Bioresource Technol., 2019, 288: 121533.
|