CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 4239-4254.DOI: 10.11949/0438-1157.20210407
• Surface and interface engineering • Previous Articles Next Articles
Peng JIANG(),Jinbo JIANG(),Xudong PENG,Xiangkai MENG,Yi MA
Received:
2021-03-22
Revised:
2021-04-22
Online:
2021-08-05
Published:
2021-08-05
Contact:
Jinbo JIANG
通讯作者:
江锦波
作者简介:
江鹏(1997—),男,硕士研究生,基金资助:
CLC Number:
Peng JIANG, Jinbo JIANG, Xudong PENG, Xiangkai MENG, Yi MA. Influence of heat transfer model on temperature and pressure distribution and steady state performance of CO2 dry gas seal under near critical condition[J]. CIESC Journal, 2021, 72(8): 4239-4254.
江鹏, 江锦波, 彭旭东, 孟祥铠, 马艺. 传热模型对近临界工况CO2干气密封温压分布和稳态性能影响[J]. 化工学报, 2021, 72(8): 4239-4254.
Add to citation manager EndNote|Ris|BibTeX
工况及参数 | 数值 |
---|---|
槽根半径rg/mm | 69 |
槽数 | 12 |
槽深hg/μm | 5 |
螺旋角β/(°) | 15 |
周向槽宽比α | 0.5 |
进口压力pin/MPa | 8 |
进口温度T/K | 360 |
动环转速n/(kr/min) | 10 |
膜厚h0/μm | 6 |
Table 1 Dry gas seal operating conditions and structural parameters of type groove
工况及参数 | 数值 |
---|---|
槽根半径rg/mm | 69 |
槽数 | 12 |
槽深hg/μm | 5 |
螺旋角β/(°) | 15 |
周向槽宽比α | 0.5 |
进口压力pin/MPa | 8 |
进口温度T/K | 360 |
动环转速n/(kr/min) | 10 |
膜厚h0/μm | 6 |
参数 | 数值 |
---|---|
外径ro/mm | 77.78 |
内径ri/mm | 58.42 |
静环外周与密封腔内壁间隙δs/mm | 20 |
动环外周与密封腔内壁间隙δr/mm | 20 |
热导率k/(W/(m·K)) | 57 |
密度ρ/(kg/m3) | 3150 |
比定压热容cp/ (J/(kg·K)) | 710 |
Table2 Dry gas seal ring structure and material parameters
参数 | 数值 |
---|---|
外径ro/mm | 77.78 |
内径ri/mm | 58.42 |
静环外周与密封腔内壁间隙δs/mm | 20 |
动环外周与密封腔内壁间隙δr/mm | 20 |
热导率k/(W/(m·K)) | 57 |
密度ρ/(kg/m3) | 3150 |
比定压热容cp/ (J/(kg·K)) | 710 |
转速n/ (r/min) | 对流传热系数/(W/(m2·K)) | |||
---|---|---|---|---|
动环 | 静环 | |||
空气 | CO2 | 空气 | CO2 | |
2000 | — | 3683 | — | 2876 |
6000 | — | 6014 | — | 2876 |
10000 | 5078 | 8188 | 1556 | 2876 |
Table 3 The heat transfer coefficient of the circumferential face of the rotor and stator ring at different rotational speeds
转速n/ (r/min) | 对流传热系数/(W/(m2·K)) | |||
---|---|---|---|---|
动环 | 静环 | |||
空气 | CO2 | 空气 | CO2 | |
2000 | — | 3683 | — | 2876 |
6000 | — | 6014 | — | 2876 |
10000 | 5078 | 8188 | 1556 | 2876 |
1 | 李志刚, 袁韬, 方志, 等. 超临界二氧化碳旋转机械动密封技术研究进展[J]. 热力透平, 2019, 48(3): 166-174, 191. |
Li Z G, Yuan T, Fang Z, et al. A review on dynamic sealing technology of supercritical carbon dioxide rotating machinery[J]. Thermal Turbine, 2019, 48(3): 166-174, 191. | |
2 | 沈伟, 彭旭东, 江锦波, 等. 高速超临界二氧化碳干气密封实际效应影响分析[J]. 化工学报, 2019, 70(7): 2645-2659. |
Shen W, Peng X D, Jiang J B, et al. Analysis on real effect of supercritical carbon dioxide dry gas seal at high speed[J]. CIESC Journal, 2019, 70(7): 2645-2659. | |
3 | 陈维, 宋鹏云, 许恒杰, 等. 含杂质二氧化碳实际气体干气密封性能研究[J]. 化工学报, 2020, 71(5): 2215-2229. |
Chen W, Song P Y, Xu H J, et al. Effects of the real-gas characteristics of carbon dioxide with impurities on the dry gas seal performance[J]. CIESC Journal, 2020, 71(5): 2215-2229. | |
4 | 邓成香, 宋鹏云, 马爱琳. 干气密封的实际气体焦耳-汤姆逊效应分析[J]. 化工学报, 2016, 67(9): 3833-3842. |
Deng C X, Song P Y, Ma A L. Analysis of Joule-Thomson effect of real gas system sealed by dry gas[J]. CIESC Journal, 2016, 67(9): 3833-3842. | |
5 | Bidkar R A, Sevincer E, Wang J F, et al. Low-leakage shaft-end seals for utility-scale supercritical CO2 turboexpanders[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2): 022503-1-8. |
6 | Fairuz Z M, Jahn I, Abdul-Rahman R. The effect of convection area on the deformation of dry gas seal operating with supercritical CO2[J]. Tribology International, 2019, 137: 349-365. |
7 | 江锦波, 滕黎明, 孟祥铠, 等. 基于多变量摄动的超临界CO2干气密封动态特性[J].化工学报,2021,72(4):2190-2202. |
Jiang J B, Teng L M, Meng X K, et al. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation[J]. CIESC Journal, 2021,72(4):2190-2202. | |
8 | 严如奇, 丁雪兴, 徐洁, 等. 离心惯性力效应对超临界二氧化碳干气密封流场与密封特性影响分析[J]. 摩擦学学报, 2020, 40(6): 781-791. |
Yan R Q, Ding X X, Xu J, et al. The influence analysis of centrifugal inertia force effect on the flow field and sealing characteristics of supercritical carbon dioxide dry gas seal[J]. Tribology, 2020, 40(6): 781-791. | |
9 | 杜秋晚, 张荻, 谢永慧. 串联式干气密封对超临界二氧化碳轴流透平气动性能的影响[J]. 中国电机工程学报, 2021, 41(13): 4576-4584. |
Du QW, Zhang D, Xie Y H. Effect of series dry gas seal on the aerodynamic performance of a supercritical carbon dioxide axial-inflow turbine[J]. Proceedings of The Chinese Society for Electrical Engineering, 2021, 41(13): 4576-4584. | |
10 | Du Q W, Zhang L, Zhang D, et al. Numerical investigation on flow characteristics and aerodynamic performance of shroud seal in a supercritical CO2 axial-flow turbine[J]. Applied Thermal Engineering, 2020, 169: 114960. |
11 | 蒋雪峰, 田勇, 邵卫卫, 等. 超临界二氧化碳压缩机特性数值模拟[J]. 航空动力学报, 2018, 33(7): 1685-1694. |
Jiang X F, Tian Y, Shao W W, et al. Numerical simulation of supercritical CO2 compressors characteristics[J]. Journal of Aerospace Power, 2018, 33(7): 1685-1694. | |
12 | 许恒杰, 宋鹏云, 毛文元, 等. 层流状态下高压高转速二氧化碳干气密封的惯性效应分析[J]. 化工学报, 2018, 69(10): 4311-4323. |
Xu H J, Song P Y, Mao W Y, et al. Analysis on inertia effect of carbon dioxide dry gas seal at high speed and pressure under laminar condition[J]. CIESC Journal, 2018, 69(10): 4311-4323. | |
13 | 刘柯炜, 李振涛, 王昕, 等. 超临界二氧化碳干气密封稳态性能研究[J]. 润滑与密封, 2020, 45(9): 71-77. |
Liu K W, Li Z T, Wang X, et al. Study on steady-state performance of supercritical carbon dioxide dry gas seal[J]. Lubrication Engineering, 2020, 45(9): 71-77. | |
14 | Fairuz Z M, Jahn I. The influence of real gas effects on the performance of supercritical CO2 dry gas seals[J]. Tribology International, 2016, 102: 333-347. |
15 | Zakariya M F, Jahn I H J. Performance of supercritical CO2 dry gas seals near the critical point[C]//Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Seoul, South Korea,2016. |
16 | 马润梅, 朱鑫磊, 张楠楠, 等. 超临界二氧化碳气体端面密封阻塞效应研究[J]. 润滑与密封, 2020, 45(1): 16-22. |
Ma R M, Zhu X L, Zhang N N, et al. Study on blocking effect supercritical carbon dioxide of dry gas seal[J]. Lubrication Engineering, 2020, 45(1): 16-22. | |
17 | Thatte A, Zheng X Q. Hydrodynamics and sonic flow transition in dry gas seals[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Düsseldorf, Germany, 2014 |
18 | Xu H J, Song P Y, Mao W Y, et al. The performance of spiral groove dry gas seal under choked flow condition considering the real gas effect[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234(4): 554-566. |
19 | Du Q W, Gao K K, Zhang D, et al. Effects of grooved ring rotation and working fluid on the performance of dry gas seal[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1323-1332. |
20 | Du Q W, Zhang D. Research on the performance of supercritical CO2 dry gas seal with different deep spiral groove[J]. Journal of Thermal Science, 2019, 28(3): 547-558. |
21 | Thomas S, Brunetière N, Tournerie B. Thermoelastohydrodynamic behavior of mechanical gas face seals operating at high pressure[J]. Journal of Tribology, 2007, 129(4): 841-850. |
22 | Bai S X, Ma C H, Peng X D, et al. Thermoelastohydrodynamic behavior of gas spiral groove face seals operating at high pressure and speed[J]. Journal of Tribology, 2015, 137(2): 021502. |
23 | Wang H, Zhu B S, Lin J S, et al. A thermohydrodynamic analysis of dry gas seals for high-temperature gas-cooled reactor[J]. Journal of Tribology, 2013, 135(2): 021701. |
24 | Brunetie`re N, Tournerie B, Fre^ne J. Influence of fluid flow regime on performances of non-contacting liquid face seals[J]. Journal of Tribology, 2002, 124(3): 515-523. |
25 | Xu J, Peng X D, Bai S X, et al. CFD simulation of microscale flow field in spiral groove dry gas seal[C]//Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. Suzhou, China, 2012: 211-217. |
26 | 彭旭东, 谢友柏, 顾永泉. 机械密封端面温度的确定[J]. 化工机械, 1996, 23(6):25-28, 21,58. |
Peng X D, Xie Y B, Gu Y Q. Determination of the end face temperature of mechanical seal[J]. Chemical Engineering & Machnery, 1996, 23(6): 25-28, 21,58. | |
27 | Gabriel R P. Fundamentals of spiral groove non-contacting face seals[J]. Lubrication Engineering, 1994, 50(3): 215-224. |
28 | Laxander A, Fesl A, Hellmig B. Development and testing of dry gas seals for turbomachinery in multiphase CO2 applications[C]// 3rd European Supercritical CO2 Conference. Paris, France, 2019. |
[1] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[2] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[3] | Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099. |
[4] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[5] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[6] | Senlin WANG, Zhaozhi LI, Yingjuan SHAO, Wenqi ZHONG. Numerical simulation on heat transfer deterioration of supercritical carbon dioxide in vertical tube [J]. CIESC Journal, 2022, 73(3): 1072-1082. |
[7] | Jianguo YAN, Shumin ZHENG, Pengcheng GUO, Bo ZHANG, Zhenkai MAO. Prediction of heat transfer characteristics for supercritical CO2 based on GA-BP neural network [J]. CIESC Journal, 2021, 72(9): 4649-4657. |
[8] | Ruqi YAN, Xuexing DING, Jie XU, Xianzhi HONG, Xin BAO. Flow field and steady performance of supercritical carbon dioxide dry gas seal based on turbulence model [J]. CIESC Journal, 2021, 72(8): 4292-4303. |
[9] | Xuejian SUN, Pengyun SONG, Wenyuan MAO, Qiangguo DENG, Hengjie XU, Wei CHEN. Dynamic contact analysis of dry gas seal during start-stop process considering material properties and surface topography of seal rings [J]. CIESC Journal, 2021, 72(8): 4279-4291. |
[10] | HONG Yanzhen, WANG Di, LI Zhuoyu, XU Yanan, WANG Hongtao, SU Yuzhong, PENG Li, LI Jun. Catalytic isomerization of α-terpineol to 1,8-cineole in supercritical carbon dioxide [J]. CIESC Journal, 2021, 72(7): 3680-3685. |
[11] | SHANG Hao, CHEN Yuan, LI Xiaolu, WANG Bingqing, LI Yuntang, PENG Xudong. Study on the influence of nonlinear effect on performance of dry gas seal under film thickness disturbance [J]. CIESC Journal, 2021, 72(4): 2213-2222. |
[12] | JIANG Jinbo, TENG Liming, MENG Xiangkai, LI Jiyun, PENG Xudong. Dynamic characteristics of supercritical CO2 dry gas seal based on multi variables perturbation [J]. CIESC Journal, 2021, 72(4): 2190-2202. |
[13] | Chen YU,Jinbo JIANG,Wenjing ZHAO,Jiyun LI,Xudong PENG,Yuming WANG. Geometrical model of surface groove based on micro-segment combination for dry gas seal and its parameter influence [J]. CIESC Journal, 2021, 72(10): 5294-5309. |
[14] | Yigao LYU, Qing LI, Zhexi WEN. Thermal-hydraulic performance of sinusoidal channel printed circuit heat exchanger [J]. CIESC Journal, 2020, 71(S2): 142-151. |
[15] | Ruqi YAN, Xianzhi HONG, Xin BAO, Jie XU, Xuexing DING. Phase-distribution regularity and sealing performance of supercritical carbon dioxide dry gas seal [J]. CIESC Journal, 2020, 71(8): 3681-3690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||