CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 1-17.DOI: 10.11949/0438-1157.20210680
• Reviews and monographs • Previous Articles Next Articles
Panfeng REN1(),Runze HAI1,Qi LI2,Wenbin LI1(),Guocong YU1,3
Received:
2021-05-18
Revised:
2021-08-27
Online:
2022-01-18
Published:
2022-01-05
Contact:
Wenbin LI
通讯作者:
李文彬
作者简介:
任盼锋(1995—),男,硕士研究生,基金资助:
CLC Number:
Panfeng REN, Runze HAI, Qi LI, Wenbin LI, Guocong YU. Review of numerical study on liquid-solids two-phase mass transfer process in fluidized bed[J]. CIESC Journal, 2022, 73(1): 1-17.
任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17.
Add to citation manager EndNote|Ris|BibTeX
文献 | 颗粒直径/m | 几何参数 | 颗粒Reynolds数(Rep) | Schmidt数(Sc) | 关联式 | ||
---|---|---|---|---|---|---|---|
塔径/m | 塔高/m | 液含率 | |||||
[ | 0.0007~0.0024 | 0.051 | 0.6096 | 0.65~0.90 | 5~130 | 1020~1540 | |
[ | 0.0381 | — | — | 0.26~0.47 | 200~1230 | 1310~1670 | |
[ | 0.00027~0.00055 | 0.035 | 0.2 | 0.5~0.92 | 0.22~6.4 | 0.052 | |
[ | 0.00305~0.00635 | — | — | 0.49~0.94 | 7~7000 | 1~2000 | |
[ | 0.0005~0.002 | 0.054 | 0.5 | 0.47~0.91 | 1~100 | 991~1130 | |
[ | 0.012~0.009 | 0.045 | — | 0.50~0.90 | 0.0405~11610 | 572~1350 | |
[ | 0.0046~0.0082 | — | — | 0.40~0.95 | 16~1320 | 305~1595 | |
[ | — | 0.05 | 1 | 0.80~1.0 | — | — | |
[ | 0.0046~0.0381 | — | — | 0.40~0.95 | 1~1320 | 305~1670 | |
[ | 0.0004~0.0009 | 0.0508 | — | 0.61~0.81 | 0.25~22.2 | 368~2896 | |
[ | 0.0000236~0.127 | — | — | 0.40~0.95 | 0.01~1000 | 0.3~1755 | |
[ | 0.0004~0.001 | 0.051 | — | 0.55~0.85 | 2~25 | 336~451 | |
[ | 0.0003~0.0008 | — | — | 0.54~0.65 | 0.644~7.312 | 998~1316 | |
[ | 0.000614 | 0.039 | 0.6 | 0.7~0.9 | 5~8 | 470 | |
[ | 0.021 | 0.04 | — | 0.41~0.46 | 969 | ||
[ | 0.0049~0.0061 | 0.192 | 0.6 | 0.50~0.70 | 112~288 | 970 | |
[ | 0.0064~0.0082 | 0.094 | 2 | 0.70~0.95 | 590~2120 | 1~1.06 | |
[ | — | — | — | 0.53~0.96 | 180~1320 | 300~2000 |
Table 1 Correlations and main parameters of liquid-solids mass transfer coefficients in fluidized beds
文献 | 颗粒直径/m | 几何参数 | 颗粒Reynolds数(Rep) | Schmidt数(Sc) | 关联式 | ||
---|---|---|---|---|---|---|---|
塔径/m | 塔高/m | 液含率 | |||||
[ | 0.0007~0.0024 | 0.051 | 0.6096 | 0.65~0.90 | 5~130 | 1020~1540 | |
[ | 0.0381 | — | — | 0.26~0.47 | 200~1230 | 1310~1670 | |
[ | 0.00027~0.00055 | 0.035 | 0.2 | 0.5~0.92 | 0.22~6.4 | 0.052 | |
[ | 0.00305~0.00635 | — | — | 0.49~0.94 | 7~7000 | 1~2000 | |
[ | 0.0005~0.002 | 0.054 | 0.5 | 0.47~0.91 | 1~100 | 991~1130 | |
[ | 0.012~0.009 | 0.045 | — | 0.50~0.90 | 0.0405~11610 | 572~1350 | |
[ | 0.0046~0.0082 | — | — | 0.40~0.95 | 16~1320 | 305~1595 | |
[ | — | 0.05 | 1 | 0.80~1.0 | — | — | |
[ | 0.0046~0.0381 | — | — | 0.40~0.95 | 1~1320 | 305~1670 | |
[ | 0.0004~0.0009 | 0.0508 | — | 0.61~0.81 | 0.25~22.2 | 368~2896 | |
[ | 0.0000236~0.127 | — | — | 0.40~0.95 | 0.01~1000 | 0.3~1755 | |
[ | 0.0004~0.001 | 0.051 | — | 0.55~0.85 | 2~25 | 336~451 | |
[ | 0.0003~0.0008 | — | — | 0.54~0.65 | 0.644~7.312 | 998~1316 | |
[ | 0.000614 | 0.039 | 0.6 | 0.7~0.9 | 5~8 | 470 | |
[ | 0.021 | 0.04 | — | 0.41~0.46 | 969 | ||
[ | 0.0049~0.0061 | 0.192 | 0.6 | 0.50~0.70 | 112~288 | 970 | |
[ | 0.0064~0.0082 | 0.094 | 2 | 0.70~0.95 | 590~2120 | 1~1.06 | |
[ | — | — | — | 0.53~0.96 | 180~1320 | 300~2000 |
文献 | 颗粒密度/ (kg/m3) | 颗粒直径/mm | 模拟对象 | 表观液速/(m/s) | 曳力模型 | 多相流 模型 | |||
---|---|---|---|---|---|---|---|---|---|
装置 | 塔径/m | 塔高/m | 液含率 | ||||||
[ | 2490 | 0.508 | LSCFB riser | 0.076 | 3.0 | 0.94~1 | 0.12~0.35 | Wen-Yu | E-E |
[ | 2540 | 1.13 | LSFB | 0.127 | 1.1 | 0.6~1 | 0.0085~0.110 | Wen-Yu, Gidaspow | E-E |
[ | 1075~2803 | 0.8~3.0 | LSFB | 0.1 | 1.2 | 0.7~1 | 0.003~0.0012 | Pandit-Joshi | E-E |
[ | 3000 | 25 | LSFB | 0.1 | 0.5 | 0.44~1 | 0.03~0.14 | Syamlal O’Brien | E-E |
[ | 2500 | 0.3 | LSFB | 0.14 | 1.5 | 0.37~1 | 0.025 | Beetstra et al., Wen-Yu, Gidaspow | E-E |
[ | 2173 | 0.75~0.93 | LSFB | 0.1 | 1.8 | 0.7~1 | 0.031~0.093 | Wen-Yu, Gidaspow, Ergun, Gibilaro, Swamee-Ohja, Haider-Levenspiel, Schiller-Naumann, Syamlal O’Brien | E-E |
[ | 2500 | 3 | LSFB | 0.14 | 0.5 | 0.5~1 | 0.07~0.13 | Gidaspow | E-L |
[ | 2540 | 1.13 | LSFB | 0.14 | 0.5 | 0.5~1 | 0.0085~0.110 | Gibilaro | E-E |
[ | 2500 | 0.508 | LSCFB riser | 0.0762 | 3 | 0.8~1 | 0.0075 | EMMS | E-E |
[ | 8710 | 6~8 | LSFB | 0.05 | 1.5 | 0.4~1 | 0.06~0.22 | — | E-E, E-L |
[ | 897 | 2 | inverse LSFB | 0.5 | 1.5 | 0.45~1 | 0.009~0.025 | Gidaspow | E-E |
[ | 1080 | 0.32 | LSCFB downer | 0.06 | 3 | 0.6~1 | 0.0055 | Wen-Yu | E-E |
[ | 2540~7780 | 2.06~6 | LSFB | 0.512 | 2.04 | 0.45~1 | 0.04~0.1 | Huilin-Gidaspow | E-L |
[ | 1050~8000, 25~950 | 0.8~3 | UCFB, DCFB | 0.076, 0.2 | 5.4 | 0.89~1 | 0.12~0.53 | Syamlal O’Brien | E-E |
[ | 2460 | 0.9~1 | cuboid LSFB | 0.3×0.025 | 1 | 0.5~1 | 0.025~0.054 | Wen-Yu, Dallavalle, TGS, Gidaspow, Syamlal O’Brien | E-E |
[ | 1080 | 0.32 | LSCFB riser | 0.038 | 3 | 0.98~1 | 0.0113~0.0187 | Gidaspow | E-E |
[ | 1200~1800 | 0.135~0.2 | LSFB | 0.05 | 1 | 0.8~1 | 0.0003~0.0014 | Wen-Yu, Syamlal O’Brien, Gibilaro, Gidaspow | E-E |
[ | 2490 | 0.508 | LSCFB riser | 0.076 | 3 | 0.98~1 | 0.15 | Gidaspow | E-E |
Table 2 Simulation of liquid-solids two-phase flow in fluidized beds
文献 | 颗粒密度/ (kg/m3) | 颗粒直径/mm | 模拟对象 | 表观液速/(m/s) | 曳力模型 | 多相流 模型 | |||
---|---|---|---|---|---|---|---|---|---|
装置 | 塔径/m | 塔高/m | 液含率 | ||||||
[ | 2490 | 0.508 | LSCFB riser | 0.076 | 3.0 | 0.94~1 | 0.12~0.35 | Wen-Yu | E-E |
[ | 2540 | 1.13 | LSFB | 0.127 | 1.1 | 0.6~1 | 0.0085~0.110 | Wen-Yu, Gidaspow | E-E |
[ | 1075~2803 | 0.8~3.0 | LSFB | 0.1 | 1.2 | 0.7~1 | 0.003~0.0012 | Pandit-Joshi | E-E |
[ | 3000 | 25 | LSFB | 0.1 | 0.5 | 0.44~1 | 0.03~0.14 | Syamlal O’Brien | E-E |
[ | 2500 | 0.3 | LSFB | 0.14 | 1.5 | 0.37~1 | 0.025 | Beetstra et al., Wen-Yu, Gidaspow | E-E |
[ | 2173 | 0.75~0.93 | LSFB | 0.1 | 1.8 | 0.7~1 | 0.031~0.093 | Wen-Yu, Gidaspow, Ergun, Gibilaro, Swamee-Ohja, Haider-Levenspiel, Schiller-Naumann, Syamlal O’Brien | E-E |
[ | 2500 | 3 | LSFB | 0.14 | 0.5 | 0.5~1 | 0.07~0.13 | Gidaspow | E-L |
[ | 2540 | 1.13 | LSFB | 0.14 | 0.5 | 0.5~1 | 0.0085~0.110 | Gibilaro | E-E |
[ | 2500 | 0.508 | LSCFB riser | 0.0762 | 3 | 0.8~1 | 0.0075 | EMMS | E-E |
[ | 8710 | 6~8 | LSFB | 0.05 | 1.5 | 0.4~1 | 0.06~0.22 | — | E-E, E-L |
[ | 897 | 2 | inverse LSFB | 0.5 | 1.5 | 0.45~1 | 0.009~0.025 | Gidaspow | E-E |
[ | 1080 | 0.32 | LSCFB downer | 0.06 | 3 | 0.6~1 | 0.0055 | Wen-Yu | E-E |
[ | 2540~7780 | 2.06~6 | LSFB | 0.512 | 2.04 | 0.45~1 | 0.04~0.1 | Huilin-Gidaspow | E-L |
[ | 1050~8000, 25~950 | 0.8~3 | UCFB, DCFB | 0.076, 0.2 | 5.4 | 0.89~1 | 0.12~0.53 | Syamlal O’Brien | E-E |
[ | 2460 | 0.9~1 | cuboid LSFB | 0.3×0.025 | 1 | 0.5~1 | 0.025~0.054 | Wen-Yu, Dallavalle, TGS, Gidaspow, Syamlal O’Brien | E-E |
[ | 1080 | 0.32 | LSCFB riser | 0.038 | 3 | 0.98~1 | 0.0113~0.0187 | Gidaspow | E-E |
[ | 1200~1800 | 0.135~0.2 | LSFB | 0.05 | 1 | 0.8~1 | 0.0003~0.0014 | Wen-Yu, Syamlal O’Brien, Gibilaro, Gidaspow | E-E |
[ | 2490 | 0.508 | LSCFB riser | 0.076 | 3 | 0.98~1 | 0.15 | Gidaspow | E-E |
1 | Dong K J, Guo B Y, Chu K W, et al. Simulation of liquid-solid flow in a coal distributor[J]. Minerals Engineering, 2008, 21(11): 789-796. |
2 | Zheng Y, Zhu J X, Marwaha N S, et al. Radial solids flow structure in a liquid-solids circulating fluidized bed[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 141-150. |
3 | Wang J Y, Shao Y Y, Yan X L, et al. Review of (gas)-liquid-solid circulating fluidized beds as biochemical and environmental reactors[J]. Chemical Engineering Journal, 2020, 386: 121951. |
4 | Sur D H, Mukhopadhyay M. Process aspects of three-phase inverse fluidized bed bioreactor: a review[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3518-3528. |
5 | Lan Q D, Bassi A S, Zhu J X, et al. Continuous protein recovery with a liquid–solid circulating fluidized-bed ion exchanger[J]. AIChE Journal, 2002, 48(2): 252-261. |
6 | Patel A, Zhu J, Nakhla G. Simultaneous carbon, nitrogen and phosphorous removal from municipal wastewater in a circulating fluidized bed bioreactor[J]. Chemosphere, 2006, 65(7): 1103-1112. |
7 | Nelson M J, Nakhla G, Zhu J. Fluidized-bed bioreactor applications for biological wastewater treatment: a review of research and developments[J]. Engineering, 2017, 3(3): 330-342. |
8 | Bello M M, Abdul Raman A A, Purushothaman M. Applications of fluidized bed reactors in wastewater treatment—a review of the major design and operational parameters[J]. Journal of Cleaner Production, 2017, 141: 1492-1514. |
9 | Liang W G, Yu Z Q, Jin Y, et al. Synthesis of linear alkylbenzene in a liquid-solid circulating fluidized bed reactor[J]. Journal of Chemical Technology & Biotechnology, 1995, 62(1): 98-102. |
10 | Chen J H, Lu X F. Progress of petroleum coke combusting in circulating fluidized bed boilers—a review and future perspectives[J]. Resources, Conservation and Recycling, 2007, 49(3): 203-216. |
11 | Mertes T S, Rhodes H B. Liquid-particle behavior (I)[J]. Chemical Engineering Progress, 1995, 51: 517-522. |
12 | Reh L. New and efficient high-temperature processes with circulating fluid bed reactors[J]. Chemical Engineering & Technology, 1995, 18(2): 75-89. |
13 | 金涌, 程易, 颜彬航. 化学反应工程的前世、今生与未来[J]. 化工学报, 2013, 64(1): 34-43. |
Jin Y, Cheng Y, Yan B H. Past, present and future of chemical reaction engineering[J]. CIESC Journal, 2013, 64(1): 34-43. | |
14 | 刘伯潭. 流体力学传质计算新模型的研究和在塔板上的应用[D]. 天津:天津大学, 2003. |
Liu B T. Study of a new mass transfer model of CFD and its application on distillation tray[D]. Tianjin: Tianjin University, 2003. | |
15 | 孙志民. 化工计算传质学的研究[D]. 天津: 天津大学, 2005. |
Sun Z M. Study on computational mass transfer in chemical engineering[D]. Tianjin: Tianjin University, 2005. | |
16 | Fan L S, Yamashita T, Jean R H. Solids mixing and segregation in a gas-liquid-solid fluidized bed[J]. Chemical Engineering Science, 1987, 42(1): 17-25. |
17 | Briens L A, Briens C L, Margaritis A, et al. Minimum liquid fluidization velocity in gas-liquid-solid fluidized beds of low-density particles[J]. Chemical Engineering Science, 1997, 52(21/22): 4231-4238. |
18 | Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 1966, 12(3): 610-612. |
19 | Narsimhan G. On a generalized expression for prediction of minimum fluidization velocity[J]. AIChE Journal, 1965, 11(3): 550-554. |
20 | Eldyasti A, Chowdhury N, Nakhla G, et al. Biological nutrient removal from leachate using a pilot liquid-solid circulating fluidized bed bioreactor (LSCFB)[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 289-297. |
21 | Hamidipour M, Chen J W, Larachi F. CFD study on hydrodynamics in three-phase fluidized beds—application of turbulence models and experimental validation[J]. Chemical Engineering Science, 2012, 78: 167-180. |
22 | Pan H, Chen X Z, Liang X F, et al. CFD simulations of gas-liquid-solid flow in fluidized bed reactors—a review[J]. Powder Technology, 2016, 299: 235-258. |
23 | Zhou X H, Ma Y L, Liu M Y, et al. CFD-PBM simulations on hydrodynamics and gas-liquid mass transfer in a gas-liquid-solid circulating fluidized bed[J]. Powder Technology, 2020, 362: 57-74. |
24 | 刘星. 液固流化床中流体动力特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
Liu X. Study on hydrodynamics characteristics of the flow in a liquid-solid fluidized bed[D]. Harbin: Harbin Institute of Technology, 2009. | |
25 | 金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
26 | Richardson J F, Zaki W N. The sedimentation of a suspension of uniform spheres under conditions of viscous flow[J]. Chemical Engineering Science, 1954, 3(2): 65-73. |
27 | Liang W G, Zhu J X. A core-annulus model for the radial flow structure in a liquid-solid circulating fluidized bed (LSCFB)[J]. Chemical Engineering Journal, 1997, 68(1): 51-62. |
28 | Lan Q D, Zhu J X, Bassi A S, et al. Continuous protein recovery using a liquid-solid circulating fluidized bed ion exchange system: modelling and experimental studies[J]. The Canadian Journal of Chemical Engineering, 2000, 78(5): 858-866. |
29 | Zheng Y, Zhu J X, Wen J Z, et al. The axial hydrodynamic behavior in a liquid-solid circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering, 1999, 77(2): 284-290. |
30 | Razzak S A. Study of phase distribution of a liquid-solid circulating fluidized bed reactor using abductive network modeling approach[J]. Chemical Product and Process Modeling, 2013, 8(2): 77-91. |
31 | Cussler E L. 扩散: 流体系统中的传质[M]. 王宇新, 姜忠义,译. 2版. 北京: 化学工业出版社, 2002. |
Cussler E L. Diffusion: Mass Transfer in Fluid Systems [M]. Wang Y X, Jiang Z Y,trans. 2nd ed. Beijing: Chemical Industry Press, 2002. | |
32 | 刘国标. 计算传递学及其在填料床传质与反应过程中的应用[D]. 天津: 天津大学, 2007. |
Liu G B. Computational transport and its application to mass transfer and reaction processes in packed-beds[D]. Tianjin: Tianjin University, 2007. | |
33 | Liu G B, Yu K T, Yuan X G, et al. Simulations of chemical absorption in pilot-scale and industrial-scale packed columns by computational mass transfer[J]. Chemical Engineering Science, 2006, 61(19): 6511-6529. |
34 | Li W B, Liu B T, Yu K T, et al. Rigorous model for the simulation of gas adsorption and its verification[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 8361-8370. |
35 | Sun Z M, Liu B T, Yuan X G, et al. New turbulent model for computational mass transfer and its application to a commercial-scale distillation column[J]. Industrial & Engineering Chemistry Research, 2005, 44(12): 4427-4434. |
36 | Liu G B, Yu K T, Yuan X G, et al. New model for turbulent mass transfer and its application to the simulations of a pilot-scale randomly packed column for CO2-NaOH chemical absorption[J]. Industrial & Engineering Chemistry Research, 2006, 45(9): 3220-3229. |
37 | Liu G B, Yu K T, Yuan X G, et al. A computational transport model for wall-cooled catalytic reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(8): 2656-2665. |
38 | Li W B, Zhang Y W, Shao Y Y, et al. A rigorous model for the simulation of chemical reaction in gas-particle bubbling fluidized bed (I): Modeling and validation[J]. Powder Technology, 2018, 327: 399-407. |
39 | Zhang Y W, Li W B, Shao Y Y, et al. A rigorous model for the simulation of chemical reaction in gas-particle bubbling fluidized bed (Ⅱ): Application to gas combustion case[J]. Powder Technology, 2018, 327: 392-398. |
40 | Li W B, Shao Y Y, Zhu J. Anisotropic turbulent mass transfer model and its application to a gas-particle bubbling fluidized bed[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1671-1678. |
41 | Li W B, Zhao X J, Liu B T, et al. Mass transfer coefficients for CO2 absorption into aqueous ammonia using structured packing[J]. Industrial & Engineering Chemistry Research, 2014, 53(14): 6185-6196. |
42 | Li W B, Yu K, Yuan X G, et al. An anisotropic turbulent mass transfer model for simulation of pilot-scale and industrial-scale packed columns for chemical absorption[J]. International Journal of Heat and Mass Transfer, 2015, 88: 775-789. |
43 | Li W B, Yu K, Yuan X G, et al. A Reynolds mass flux model for gas separation process simulation(Ⅰ): Modeling and validation[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1085-1094. |
44 | Li W B, Yu K, Yuan X G, et al. A Reynolds mass flux model for gas separation process simulation(Ⅱ): Application to adsorption on activated carbon in a packed column[J]. Chinese Journal of Chemical Engineering, 2015, 23(8): 1245-1255. |
45 | Li W B, Liu B T. A Reynolds mass flux model for the simulation of chemical absorption of CO2 into 2-amino-2-methyl-1-propanol in a packed column[J]. Industrial & Engineering Chemistry Research, 2015, 54(4): 1385-1396. |
46 | 李文彬, 刘伯潭, 余国琮, 等. 雷诺质流模型在填料床反应过程中的应用(Ⅰ): MEA吸收CO2过程的模拟[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(5): 379-387. |
Li W B, Liu B T, Yu G C, et al. Reynolds mass flux model and its application to reaction processes in packed bed(Ⅰ): Simulation of MEA-CO2 absorption process[J]. Journal of Tianjin University (Science and Technology), 2015, 48(5): 379-387. | |
47 | 李文彬, 刘伯潭, 余国琮, 等. 雷诺质流模型在填料床反应过程中的应用(Ⅱ):合成醋酸乙烯过程的模拟[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(9): 771-778. |
Li W B, Liu B T, Yu G C, et al. Reynolds mass flux model and its application to reaction processes in packed bed(Ⅱ): Simulation of vinyl acetate synthesis process[J]. Journal of Tianjin University (Science and Technology), 2015, 48(9): 771-778. | |
48 | Li W B, Yu K, Yuan X G, et al. An anisotropic Reynolds mass flux model for the simulation of chemical reaction in gas-particle CFB risers[J]. Chemical Engineering Science, 2015, 135: 117-127. |
49 | Li W B, Yu K, Liu B T, et al. Computational fluid dynamics simulation of hydrodynamics and chemical reaction in a CFB downer[J]. Powder Technology, 2015, 269: 425-436. |
50 | Li W B, Yu K, Yuan X G, et al. Simulation of chemical reaction process in gas-particle CFB downers by anisotropic turbulent mass transfer model[J]. Chemical Engineering Research and Design, 2018, 132: 452-459. |
51 | Ren P F, Li W B, Yu K. Computational fluid dynamics simulation of adsorption process in a liquid-solids fluidized bed[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105428. |
52 | Ren P F, Zhang Y W, Li W B, et al. Turbulent mass transfer model for simulating protein desorption in liquid-solid circulating fluidized bed risers[J]. Particuology, 2021, 57: 167-175. |
53 | Zhang Y W, Ren P F, Li W B, et al. Turbulent mass transfer model for the simulation of liquid-solid CFB risers and its verification[J]. Powder Technology, 2021, 377: 847-856. |
54 | Durst F, Miloievic D, Schönung B. Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study[J]. Applied Mathematical Modelling, 1984, 8(2): 101-115. |
55 | Li X K. Multiphase flow and fluidization, continuum and kinetic theory descriptions : Dimitri Gidaspow; Academic Press, New York, 1993, 467 pp. Price $60.00. ISBN 0-12-282770-9[J]. Journal of Non Newtonian Fluid Mechanics, 1994, 55(2): 207-208. |
56 | 蒋新, 陈甘棠, 李希. 湍流中粒子-流体间的传质[J]. 高校化学工程学报, 1996, 10(3): 37-42. |
Jiang X, Chen G T, Li X. Particle/fluid mass transfer in turbulence[J]. Journal of Chemical Engineering of Chinese Universities, 1996, 10(3): 37-42. | |
57 | 修伍德, 皮克福特, 威尔基. 传质学[M]. 时钧,李盘生,译.北京: 化学工业出版社, 1988. |
Sherwood T K, Pigford R L, Wilke C R. Mass Transfer[M]. Shi J, Li P S, trans. Beijing: Chemical Industry Press, 1988. | |
58 | van der Meer A P, Blanchard C M R J P, Wesselingh J A. Mixing of particles in liquid fluidized beds[J]. Chemical Engineering Research and Design, 1984, 62(4): 214-222. |
59 | Lemoine F, Antoine Y, Wolff M, et al. Some experimental investigations on the concentration variance and its dissipation rate in a grid generated turbulent flow[J]. International Journal of Heat and Mass Transfer, 2000, 43(7): 1187-1199. |
60 | 余国琮, 袁希钢. 化工计算传质学导论[M]. 天津: 天津大学出版社, 2011. |
Yu G C, Yuan X G. Introduction to Computational Mass Transfer [M]. Tianjin: Tianjin University Press, 2011. | |
61 | Gunn D J. Proceedings of the symposium on the interaction between fluids and particles, The Institution of Chemical Engineers, London (1962), 351 pp., £6[J]. Chemical Engineering Science, 1964, 19(4): 324. |
62 | Hsu C T, Molstad M C. Process design data—rate of mass transfer from gas stream to porous solid in fluidized beds[J]. Industrial & Engineering Chemistry, 1955, 47(8): 1550-1559. |
63 | Richardson J F, Szekely J. Mass transfer in a fluidized bed[J]. Trans. Inst. Chem. Eng., 1961, 39: 212-222. |
64 | Fan L T, Yang Y C, Wen C Y. Mass transfer in semifluidized beds for solid-liquid system[J]. AIChE Journal, 1960, 6(3): 482-487. |
65 | Rowe P N, Partridge B A, Cheney A G, et al. Heat and mass transfer from a single sphere to a fluidflowing through an array[J]. Transactions of the Institution of Chemical Engineers, 1965, 43: 271-286 |
66 | Tournie P, Laguerie C, Couderc J P. Mass transfer in a liquid fluidized bed at low Reynolds numbers[J]. Chemical Engineering Science, 1977, 32(10): 1259-1261. |
67 | Gamson B. Heat and mass transfer fluid solid systems[J]. Chemical Engineering Progress, 1951, 47: 19-28. |
68 | Evans G C, Gerald C F. Mass transfer from benzoic acid granules to water in fixed and fluidized beds at low Reynolds numbers[J]. Chemical Engineering Progress, 1953, 49(3): 135-139. |
69 | Upadhyay S N, Tripathi G. Liquid-phase mass transfer in fixed and fluidized beds of large particles[J]. Journal of Chemical & Engineering Data, 1975, 20(1): 20-26. |
70 | Tournié P, Laguerie C, Couderc J P. Correlations for mass transfer between fluidized spheres and a liquid[J]. Chemical Engineering Science, 1979, 34(10): 1247-1255. |
71 | Ballesteros R L, Riba J P, Couderc J P. Dissolution of non spherical particles in solid-liquid fluidization[J]. Chemical Engineering Science, 1982, 37(11): 1639-1644. |
72 | Joshi J B. Solid-liquid fluidised beds: some design aspects[J]. Chemical Engineering Research & Design, 1983, 61(3): 143-161. |
73 | Livingston A G, Noble J B. Mass transfer in liquid-solid fluidized beds of ion exchange resins at low Reynolds numbers[J]. Chemical Engineering Science, 1993, 48(6): 1174-1178. |
74 | Dwivedi P N, Upadhyay S N. Particle-fluid mass transfer in fixed and fluidized beds[J]. Industrial & Engineering Chemistry Process Design and Development, 1977, 16(2): 157-165. |
75 | Rahmant K, Streat M. Mass transfer in liquid fluidized beds of ion exchange particles[J]. Chemical Engineering Science, 1981, 36(2): 293-300. |
76 | Shen G C, Geankoplis C J, Brodkey R S. A note on particle-liquid mass transfer in a fluidized bed of small irregular-shaped benzoic acid particles[J]. Chemical Engineering Science, 1985, 40(9): 1797-1802. |
77 | Yang J, Renken A. Intensification of mass transfer in liquid fluidized beds with inert particles[J]. Chemical Engineering and Processing: Process Intensification, 1998, 37(6): 537-544. |
78 | Boskovic-Vragolovic N, Brzic D V, Grbavcic Z. Mass transfer between a fluid and an immersed object in liquid-solid packed and fluidized beds[J]. Journal of the Serbian Chemical Society, 2005, 70(11): 1373-1379. |
79 | Couderc J P, Gibert H, Angelino H. Transfert de matière par diffusion en fluidisation liquide[J]. Chemical Engineering Science, 1972, 27(1): 11-20. |
80 | Damronglerd S, Couderc J, Angelino H. Mass transfer in particulate fluidisation[J]. Transactions of the Institution of Chemical Engineers, 1975, 53: 175-180. |
81 | Vanadurongwan V, Laguerie C, Couderc J P. Influence des propriétés physiques sur le transfert de matiére en fluidisation liquide[J]. The Chemical Engineering Journal, 1976, 12(1): 29-31. |
82 | Cheng Y, Zhu J X. CFD modelling and simulation of hydrodynamics in liquid-solid circulating fluidized beds[J]. The Canadian Journal of Chemical Engineering, 2005, 83(2): 177-185. |
83 | Cornelissen J T, Taghipour F, Escudié R, et al. CFD modelling of a liquid-solid fluidized bed[J]. Chemical Engineering Science, 2007, 62(22): 6334-6348. |
84 | Reddy R K, Joshi J B. CFD modeling of solid-liquid fluidized beds of mono and binary particle mixtures[J]. Chemical Engineering Science, 2009, 64(16): 3641-3658. |
85 | 姚秀颖, 吴桂英, 关彦军, 等. 液固流化床内固含率时空分布特性的CFD模拟[J]. 化工学报, 2010, 61(9): 2287-2295. |
Yao X Y, Wu G Y, Guan Y J, et al. CFD simulation for spatio-temporal distribution of solid holdup in liquid-fluidized beds[J]. CIESC Journal, 2010, 61(9): 2287-2295. | |
86 | Huang X Y. CFD modeling of liquid-solid fluidization: effect of drag correlation and added mass force[J]. Particuology, 2011, 9(4): 441-445. |
87 | Visuri O, Wierink G A, Alopaeus V. Investigation of drag models in CFD modeling and comparison to experiments of liquid-solid fluidized systems[J]. International Journal of Mineral Processing, 2012, 104/105: 58-70. |
88 | Wang S Y, Guo S, Gao J S, et al. Simulation of flow behavior of liquid and particles in a liquid-solid fluidized bed[J]. Powder Technology, 2012, 224: 365-373. |
89 | Zhang K, Wu G Y, Brandani S, et al. CFD simulation of dynamic characteristics in liquid-solid fluidized beds[J]. Powder Technology, 2012, 227: 104-110. |
90 | Liu G D, Wang P, Wang S, et al. Numerical simulation of flow behavior of liquid and particles in liquid-solid risers with multi scale interfacial drag method[J]. Advanced Powder Technology, 2013, 24(2): 537-548. |
91 | Ghatage S V, Peng Z B, Sathe M J, et al. Stability analysis in solid-liquid fluidized beds: experimental and computational[J]. Chemical Engineering Journal, 2014, 256: 169-186. |
92 | Wang S Y, Sun J, Yang Q, et al. Numerical simulation of flow behavior of particles in an inverse liquid-solid fluidized bed[J]. Powder Technology, 2014, 261: 14-21. |
93 | Dadashi A, Zhang C, Zhu J X. Numerical simulation of counter-current flow field in the downcomer of a liquid-solid circulating fluidized bed[J]. Particuology, 2015, 21: 48-54. |
94 | Liu G D, Yu F, Lu H L, et al. CFD-DEM simulation of liquid-solid fluidized bed with dynamic restitution coefficient[J]. Powder Technology, 2016, 304: 186-197. |
95 | Song Y F, Zhu J, Zhang C, et al. Comparison of liquid-solid flow characteristics in upward and downward circulating fluidized beds by CFD approach[J]. Chemical Engineering Science, 2019, 196: 501-513. |
96 | 张仪, 李兵, 白玉龙, 等. 液固流态化动态过程中相间作用力的数值模拟及实验验证[J]. 化工学报, 2020, 71(11): 5129-5139. |
Zhang Y, Li B, Bai Y L, et al. Numerical simulation and experimental validation of inter-phase forces in dynamic process of liquid-solid fluidization[J]. CIESC Journal, 2020, 71(11): 5129-5139. | |
97 | Dadashi A, Zhu J X, Zhang C. A computational fluid dynamics study on the flow field in a liquid-solid circulating fluidized bed riser[J]. Powder Technology, 2014, 260: 52-58. |
98 | Yang N, Wang W, Ge W, et al. Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561. |
99 | Karimipour S, Mostoufi N, Sotudeh-Gharebagh R. Modeling the hydrodynamics of downers by cluster-based approach[J]. Industrial & Engineering Chemistry Research, 2006, 45(21): 7204-7209. |
100 | Mazumder J, Zhu J X, Bassi A S, et al. Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery[J]. Biotechnology and Bioengineering, 2009, 104(1): 111-126. |
101 | Kalaga D V, Reddy R K, Joshi J B, et al. Liquid phase axial mixing in solid-liquid circulating multistage fluidized bed: CFD modeling and RTD measurements[J]. Chemical Engineering Journal, 2012, 191: 475-490. |
102 | Dadashi A, Zhu J X, Zhang C. CFD modelling of continuous protein extraction process using liquid-solid circulating fluidized beds[J]. The Canadian Journal of Chemical Engineering, 2014, 92(11): 1911-1919. |
103 | Derksen J J. Simulations of solid-liquid mass transfer in fixed and fluidized beds[J]. Chemical Engineering Journal, 2014, 255: 233-244. |
[1] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[2] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[3] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[4] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[5] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[6] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[7] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[8] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[13] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||