CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4903-4916.DOI: 10.11949/0438-1157.20220762
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Hanwen XUE1,2(), Feng NIE1,2, Yanxing ZHAO1, Xueqiang DONG1,2, Hao GUO1, Jun SHEN1,2, Maoqiong GONG1,2()
Received:
2022-05-30
Revised:
2022-09-13
Online:
2022-12-06
Published:
2022-11-05
Contact:
Maoqiong GONG
薛涵文1,2(), 聂峰1,2, 赵延兴1, 董学强1,2, 郭浩1, 沈俊1,2, 公茂琼1,2()
通讯作者:
公茂琼
作者简介:
薛涵文(1993—),男,博士研究生,xuehanwen16@mails.ucas.ac.cn
基金资助:
CLC Number:
Hanwen XUE, Feng NIE, Yanxing ZHAO, Xueqiang DONG, Hao GUO, Jun SHEN, Maoqiong GONG. Experimental study of flow boiling pressure drop of R290 in a horizontal tube based on flow pattern[J]. CIESC Journal, 2022, 73(11): 4903-4916.
薛涵文, 聂峰, 赵延兴, 董学强, 郭浩, 沈俊, 公茂琼. 基于流型的R290水平管内流动沸腾压降实验研究[J]. 化工学报, 2022, 73(11): 4903-4916.
Add to citation manager EndNote|Ris|BibTeX
文献 | G/(kg·m-2·s-1) | q/(kW· m-2) | d/mm | p/MPa | x | 流向 | 材质 | 最佳预测或发展关联式 |
---|---|---|---|---|---|---|---|---|
[ | 250~500 | 5.0~21.0 | 2.46 | 0.46~0.71 | 0~0.9 | 水平 | 铜 | — |
[ | 50~200 | 恒壁温287 K | 10.9, 8.0 | 0.35~0.62 | 0.1~0.9 | 水平 | 铜 | — |
[ | 50~400 | 5.0~20.0 | 1.5, 3.0 | 0.46~0.63 | 0~1.0 | 水平 | 不锈钢 | L-M[ |
[ | 100~500 | 5.0~280.0 | 1.7 | 0.90~1.46 | 0.1~1.0 | 竖直向上 | 不锈钢 | Friedel[ |
[ | 200~800 | 恒壁温 | 0.96 | 1.35~1.42 | 0~0.9 | 水平 | 铜 | Friedel[ |
[ | 62~104 | 11.7~87.1 | 6.0 | 0.15~0.45 | 0.1~1.0 | 水平 | 铜 | M-H[ |
[ | 175~350 | 15.8~32.3 | 1.2 | 1.08~1.71 | 0.1~0.9 | 水平 | 铝 | Sun[ |
[ | 240~480 | 5.0~60.0 | 1.0 | 0.95 | 0~0.9 | 水平 | 不锈钢 | Zhang[ |
[ | 150~500 | 2.5~40.0 | 6.0, 8.0 | 0.95~1.21 | 0~1.0 | 水平 | 不锈钢 | Friedel[ |
[ | 250~500 | 15.0~33.0 | 5.0(外径) | 0.46~0.63 | 0.1~0.9 | 水平 | 铜 | Xu[ |
[ | 200~400 | 5.0 | 10.0 | 1.00~3.00 | 0.1~0.9 | 水平 | 铜 | Friedel[ |
Table 1 The summary of the pressure drop studies of R290
文献 | G/(kg·m-2·s-1) | q/(kW· m-2) | d/mm | p/MPa | x | 流向 | 材质 | 最佳预测或发展关联式 |
---|---|---|---|---|---|---|---|---|
[ | 250~500 | 5.0~21.0 | 2.46 | 0.46~0.71 | 0~0.9 | 水平 | 铜 | — |
[ | 50~200 | 恒壁温287 K | 10.9, 8.0 | 0.35~0.62 | 0.1~0.9 | 水平 | 铜 | — |
[ | 50~400 | 5.0~20.0 | 1.5, 3.0 | 0.46~0.63 | 0~1.0 | 水平 | 不锈钢 | L-M[ |
[ | 100~500 | 5.0~280.0 | 1.7 | 0.90~1.46 | 0.1~1.0 | 竖直向上 | 不锈钢 | Friedel[ |
[ | 200~800 | 恒壁温 | 0.96 | 1.35~1.42 | 0~0.9 | 水平 | 铜 | Friedel[ |
[ | 62~104 | 11.7~87.1 | 6.0 | 0.15~0.45 | 0.1~1.0 | 水平 | 铜 | M-H[ |
[ | 175~350 | 15.8~32.3 | 1.2 | 1.08~1.71 | 0.1~0.9 | 水平 | 铝 | Sun[ |
[ | 240~480 | 5.0~60.0 | 1.0 | 0.95 | 0~0.9 | 水平 | 不锈钢 | Zhang[ |
[ | 150~500 | 2.5~40.0 | 6.0, 8.0 | 0.95~1.21 | 0~1.0 | 水平 | 不锈钢 | Friedel[ |
[ | 250~500 | 15.0~33.0 | 5.0(外径) | 0.46~0.63 | 0.1~0.9 | 水平 | 铜 | Xu[ |
[ | 200~400 | 5.0 | 10.0 | 1.00~3.00 | 0.1~0.9 | 水平 | 铜 | Friedel[ |
参数 | 仪器 | 范围 | 不确定度 |
---|---|---|---|
m/(kg·h-1) | ULTRA MKⅡ流量计 | 0~180 | 0.1% |
p/MPa | UNIK压力传感器 | 0~1 | 0.04% |
pdp/kPa | UNIK压差传感器 | 0~40 | 0.04% |
T/K | PT100铂电阻温度计 | 55~373 | 0.1 K |
U/V | Keithley 2700数字电压表 | 0~220 | 0.005% |
I/A | 青智1659电流表 | 0~5 | 0.2% |
L/mm | 游标卡尺 | 0~300 | 0.02 mm |
LT/m | 卷尺 | 0~3 | 1 mm |
Table 2 Measuring instruments and uncertainties
参数 | 仪器 | 范围 | 不确定度 |
---|---|---|---|
m/(kg·h-1) | ULTRA MKⅡ流量计 | 0~180 | 0.1% |
p/MPa | UNIK压力传感器 | 0~1 | 0.04% |
pdp/kPa | UNIK压差传感器 | 0~40 | 0.04% |
T/K | PT100铂电阻温度计 | 55~373 | 0.1 K |
U/V | Keithley 2700数字电压表 | 0~220 | 0.005% |
I/A | 青智1659电流表 | 0~5 | 0.2% |
L/mm | 游标卡尺 | 0~300 | 0.02 mm |
LT/m | 卷尺 | 0~3 | 1 mm |
饱和压力p/MPa | 饱和温度 T/K | 液相密度 ρl /(kg·m-3) | 气相密度 ρv/(kg·m-3) | ρl /ρv | 表面张力 σ/(mN·m-1) | 液相黏度 μl /(μPa·s) | 气相黏度 μv/(μPa·s) |
---|---|---|---|---|---|---|---|
0.215 | 249.6 | 558.8 | 4.9 | 114.6 | 13.2 | 160.7 | 6.8 |
0.315 | 260.4 | 545.3 | 7.0 | 78.0 | 11.8 | 143.3 | 7.1 |
0.415 | 268.8 | 534.4 | 9.1 | 58.7 | 10.7 | 131.3 | 7.3 |
Table 3 Thermophysical properties of R290 under different saturation pressures
饱和压力p/MPa | 饱和温度 T/K | 液相密度 ρl /(kg·m-3) | 气相密度 ρv/(kg·m-3) | ρl /ρv | 表面张力 σ/(mN·m-1) | 液相黏度 μl /(μPa·s) | 气相黏度 μv/(μPa·s) |
---|---|---|---|---|---|---|---|
0.215 | 249.6 | 558.8 | 4.9 | 114.6 | 13.2 | 160.7 | 6.8 |
0.315 | 260.4 | 545.3 | 7.0 | 78.0 | 11.8 | 143.3 | 7.1 |
0.415 | 268.8 | 534.4 | 9.1 | 58.7 | 10.7 | 131.3 | 7.3 |
文献 | 间歇流 | 环状流 | 合计 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ARD/% | AARD/% | λ30%/% | ARD/% | AARD/% | λ30%/% | ARD/% | AARD/% | λ30%/% | ||
均相模型 | [ | 48.6 | 51.8 | 36.6 | -18.7 | 24.1 | 63.9 | 5.9 | 34.2 | 53.9 |
[ | 46.1 | 54.9 | 42.0 | 55.5 | 55.5 | 30.4 | 52.1 | 55.3 | 34.6 | |
[ | 54.8 | 57.6 | 25.0 | -18.6 | 24.1 | 63.4 | 8.3 | 36.3 | 49.3 | |
[ | 46.4 | 49.6 | 37.5 | -24.3 | 30.3 | 47.4 | 1.6 | 37.4 | 43.8 | |
分相模型 | [ | 237.8 | 241.6 | 2.7 | 64.2 | 70.6 | 35.6 | 127.7 | 133.2 | 23.5 |
[ | 384.5 | 386.4 | 0 | 137.4 | 140.8 | 11.3 | 227.8 | 230.7 | 7.2 | |
[ | 175.8 | 178.1 | 0 | 37.1 | 38.8 | 51.5 | 87.9 | 89.8 | 32.7 | |
[ | 29.9 | 36.9 | 53.6 | 50.9 | 66.1 | 11.9 | 43.2 | 55.4 | 27.1 | |
[ | 72.5 | 75.7 | 13.4 | 19.5 | 22.7 | 70.1 | 38.9 | 42.1 | 49.3 | |
[ | 186.1 | 201.9 | 2.7 | 1.7 | 39.8 | 35.6 | 69.2 | 99.1 | 23.5 | |
[ | 42.8 | 42.9 | 32 | -6.6 | 17.7 | 84.1 | 10.5 | 26.4 | 66.1 | |
[ | -22.8 | 34.0 | 48.2 | -69.4 | 69.4 | 2.1 | -52.4 | 56.5 | 19.0 | |
[ | 73.7 | 76.9 | 12.5 | 21.0 | 23.2 | 68.0 | 40.3 | 42.8 | 47.7 | |
[ | 41.2 | 45.4 | 41.1 | 16.8 | 19.4 | 75.3 | 25.7 | 28.9 | 62.7 | |
[ | 124.9 | 130.3 | 0.9 | -10.1 | 49.4 | 35.1 | 39.4 | 79.0 | 22.5 | |
[ | 113.3 | 116.3 | 0 | 8.1 | 22.5 | 77.8 | 46.6 | 56.8 | 49.3 | |
[ | -4.4 | 11.6 | 93.0 | -13.2 | 14.8 | 99.5 | -8.5 | 15.8 | 97.0 | |
[ | -53.3 | 55.2 | 8.9 | -65.4 | 65.7 | 3.1 | -61 | 61.9 | 5.2 | |
本文 | 3.2 | 9.4 | 94.0 | 1.3 | 3.1 | 100 | -0.2 | 5.2 | 97.9 |
Table 4 The prediction results of friction pressure drop correlation
文献 | 间歇流 | 环状流 | 合计 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ARD/% | AARD/% | λ30%/% | ARD/% | AARD/% | λ30%/% | ARD/% | AARD/% | λ30%/% | ||
均相模型 | [ | 48.6 | 51.8 | 36.6 | -18.7 | 24.1 | 63.9 | 5.9 | 34.2 | 53.9 |
[ | 46.1 | 54.9 | 42.0 | 55.5 | 55.5 | 30.4 | 52.1 | 55.3 | 34.6 | |
[ | 54.8 | 57.6 | 25.0 | -18.6 | 24.1 | 63.4 | 8.3 | 36.3 | 49.3 | |
[ | 46.4 | 49.6 | 37.5 | -24.3 | 30.3 | 47.4 | 1.6 | 37.4 | 43.8 | |
分相模型 | [ | 237.8 | 241.6 | 2.7 | 64.2 | 70.6 | 35.6 | 127.7 | 133.2 | 23.5 |
[ | 384.5 | 386.4 | 0 | 137.4 | 140.8 | 11.3 | 227.8 | 230.7 | 7.2 | |
[ | 175.8 | 178.1 | 0 | 37.1 | 38.8 | 51.5 | 87.9 | 89.8 | 32.7 | |
[ | 29.9 | 36.9 | 53.6 | 50.9 | 66.1 | 11.9 | 43.2 | 55.4 | 27.1 | |
[ | 72.5 | 75.7 | 13.4 | 19.5 | 22.7 | 70.1 | 38.9 | 42.1 | 49.3 | |
[ | 186.1 | 201.9 | 2.7 | 1.7 | 39.8 | 35.6 | 69.2 | 99.1 | 23.5 | |
[ | 42.8 | 42.9 | 32 | -6.6 | 17.7 | 84.1 | 10.5 | 26.4 | 66.1 | |
[ | -22.8 | 34.0 | 48.2 | -69.4 | 69.4 | 2.1 | -52.4 | 56.5 | 19.0 | |
[ | 73.7 | 76.9 | 12.5 | 21.0 | 23.2 | 68.0 | 40.3 | 42.8 | 47.7 | |
[ | 41.2 | 45.4 | 41.1 | 16.8 | 19.4 | 75.3 | 25.7 | 28.9 | 62.7 | |
[ | 124.9 | 130.3 | 0.9 | -10.1 | 49.4 | 35.1 | 39.4 | 79.0 | 22.5 | |
[ | 113.3 | 116.3 | 0 | 8.1 | 22.5 | 77.8 | 46.6 | 56.8 | 49.3 | |
[ | -4.4 | 11.6 | 93.0 | -13.2 | 14.8 | 99.5 | -8.5 | 15.8 | 97.0 | |
[ | -53.3 | 55.2 | 8.9 | -65.4 | 65.7 | 3.1 | -61 | 61.9 | 5.2 | |
本文 | 3.2 | 9.4 | 94.0 | 1.3 | 3.1 | 100 | -0.2 | 5.2 | 97.9 |
流型 | c1 | c2 | c3 | c4 | c5 | c6 |
---|---|---|---|---|---|---|
间歇流 | 1.90 | 0.19 | 0.52 | -0.77 | 4.66 | 0.28 |
环状流 | 1.90 | 0.76 | 1.02 | 0.84 | 0.37 | 0.28 |
Table 5 The fitting parameters in Eq.(19)
流型 | c1 | c2 | c3 | c4 | c5 | c6 |
---|---|---|---|---|---|---|
间歇流 | 1.90 | 0.19 | 0.52 | -0.77 | 4.66 | 0.28 |
环状流 | 1.90 | 0.76 | 1.02 | 0.84 | 0.37 | 0.28 |
文献 | 工质 | 数据 数量 | p/MPa | x | G/(kg· m-2 ·s-1) | d/mm | 预测结果(ARD(%)/AARD(%)/λ30%(%)) | |
---|---|---|---|---|---|---|---|---|
本文 | Yang[ | |||||||
合计 | — | 1410 | 0.02~3.00 | 0~1 | 6.3~845 | 0.85~18.0 | 10.0/19.3/80.3 | 38.4/37.5/48.6 |
[ | R134a | 30 | 0.35 | 0~0.9 | 200~500 | 9.52 | 5.9/20.3/82.8 | 31.4/37.1/65.5 |
[ | R1234yf | 74 | 0.44~0.59 | 0~1 | 300~760 | 7.90~10.85 | -3.5/20.8/83.8 | 64.9/64.1/25.7 |
[ | R410A,R32,R1234ze(E),R134a | 166 | 1.27~4.00 | 0~1 | 200~400 | 0.85 | -0.9/25.5/60.8 | -45.8/46.2/18.7 |
[ | R134a | 33 | 0.61~0.82 | 0~1 | 750~845 | 1.0 | 15.2/17.2/84.8 | -44.1/44.1/18.2 |
[ | H2O | 24 | 0.02 | 0.2~0.9 | 6.3~9.8 | 18.0 | -3.2/12.3/92.0 | 25.1/35.6/62.5 |
[ | R600a | 418 | 0.22~0.42 | 0~1 | 67~190 | 6.0 | -3.0/13.4/86.7 | -12.6/18.5/84.7 |
[ | R1234ze(E) | 520 | 0.22~0.42 | 0~1 | 67~190 | 6.0 | -15.4/16.2/84.8 | -7.2/13.9/89.8 |
[ | R290 | 50 | 0.95~1.21 | 0~1 | 150~500 | 6.0 | -16.6/23.9/70.0 | -13.8/33.3/40.0 |
[ | R14 | 66 | 1.00~3.00 | 0~0.9 | 200~650 | 4.0 | -19.3/24.4/70.1 | 32.1/56.4/22.7 |
[ | R290 | 29 | 0.46~0.63 | 0.1~0.9 | 250~500 | 5.0 | 9.0/19.1/86.2 | -20.0/25.8/58.6 |
Table 6 Prediction results of the new model on literature data
文献 | 工质 | 数据 数量 | p/MPa | x | G/(kg· m-2 ·s-1) | d/mm | 预测结果(ARD(%)/AARD(%)/λ30%(%)) | |
---|---|---|---|---|---|---|---|---|
本文 | Yang[ | |||||||
合计 | — | 1410 | 0.02~3.00 | 0~1 | 6.3~845 | 0.85~18.0 | 10.0/19.3/80.3 | 38.4/37.5/48.6 |
[ | R134a | 30 | 0.35 | 0~0.9 | 200~500 | 9.52 | 5.9/20.3/82.8 | 31.4/37.1/65.5 |
[ | R1234yf | 74 | 0.44~0.59 | 0~1 | 300~760 | 7.90~10.85 | -3.5/20.8/83.8 | 64.9/64.1/25.7 |
[ | R410A,R32,R1234ze(E),R134a | 166 | 1.27~4.00 | 0~1 | 200~400 | 0.85 | -0.9/25.5/60.8 | -45.8/46.2/18.7 |
[ | R134a | 33 | 0.61~0.82 | 0~1 | 750~845 | 1.0 | 15.2/17.2/84.8 | -44.1/44.1/18.2 |
[ | H2O | 24 | 0.02 | 0.2~0.9 | 6.3~9.8 | 18.0 | -3.2/12.3/92.0 | 25.1/35.6/62.5 |
[ | R600a | 418 | 0.22~0.42 | 0~1 | 67~190 | 6.0 | -3.0/13.4/86.7 | -12.6/18.5/84.7 |
[ | R1234ze(E) | 520 | 0.22~0.42 | 0~1 | 67~190 | 6.0 | -15.4/16.2/84.8 | -7.2/13.9/89.8 |
[ | R290 | 50 | 0.95~1.21 | 0~1 | 150~500 | 6.0 | -16.6/23.9/70.0 | -13.8/33.3/40.0 |
[ | R14 | 66 | 1.00~3.00 | 0~0.9 | 200~650 | 4.0 | -19.3/24.4/70.1 | 32.1/56.4/22.7 |
[ | R290 | 29 | 0.46~0.63 | 0.1~0.9 | 250~500 | 5.0 | 9.0/19.1/86.2 | -20.0/25.8/58.6 |
1 | Granryd E. Hydrocarbons as refrigerants—an overview[J]. International Journal of Refrigeration, 2001, 24(1): 15-24. |
2 | 安青松, 闫若雪, 孙博阳, 等. “双碳”背景下天然工质的改革及减排潜力[J]. 华电技术, 2021, 43(11): 85-90. |
An Q S, Yan R X, Sun B Y, et al. Natural working fluids transformation and carbon emission reduction potential on the path to carbon peaking and carbon neutrality[J]. Huadian Technology, 2021, 43(11): 85-90. | |
3 | Mauro A W, Napoli G, Pelella F, et al. Flow pattern, condensation and boiling inside and outside smooth and enhanced surfaces of propane (R290). State of the art review[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121316. |
4 | Yadav S, Liu J, Kim S C. A comprehensive study on 21st-century refrigerants—R290 and R1234yf: a review[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121947. |
5 | Allymehr E, Pardiñas Á Á, Eikevik T M, et al. Characteristics of evaporation of propane (R290) in compact smooth and microfinned tubes[J]. Applied Thermal Engineering, 2020, 181: 115880. |
6 | Zhou W J, Gan Z H. A potential approach for reducing the R290 charge in air conditioners and heat pumps[J]. International Journal of Refrigeration, 2019, 101: 47-55. |
7 | Thome J R, Cheng L X, Ribatski G, et al. Flow boiling of ammonia and hydrocarbons: a state-of-the-art review[J]. International Journal of Refrigeration, 2008, 31(4): 603-620. |
8 | Lee H S, Yoon J I, Kim J D, et al. Evaporating heat transfer and pressure drop of hydrocarbon refrigerants in 9.52 and 12.70 mm smooth tube[J]. International Journal of Heat and Mass Transfer, 2005, 48(12): 2351-2359. |
9 | Choi K I, Pamitran A S, Oh J T, et al. Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels[J]. International Journal of Refrigeration, 2009, 32(5): 837-845. |
10 | Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45: 39-48. |
11 | Maqbool M H, Palm B, Khodabandeh R. Investigation of two phase heat transfer and pressure drop of propane in a vertical circular minichannel[J]. Experimental Thermal and Fluid Science, 2013, 46: 120-130. |
12 | Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow[C]// Proc. of European Two-Phase Flow Group Meet. Ispra, Italy, 1979. |
13 | Müller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308. |
14 | Wang S, Gong M Q, Chen G F, et al. Two-phase heat transfer and pressure drop of propane during saturated flow boiling inside a horizontal tube[J]. International Journal of Refrigeration, 2014, 41: 200-209. |
15 | López-Belchí A, Illán-Gómez F, García-Cascales J R, et al. Condensing two-phase pressure drop and heat transfer coefficient of propane in a horizontal multiport mini-channel tube: experimental measurements[J]. International Journal of Refrigeration, 2016, 68: 59-75. |
16 | Sun L C, Mishima K. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels[J]. International Journal of Multiphase Flow, 2009, 35(1): 47-54. |
17 | Agarwal A, Garimella S. Modeling of pressure drop during condensation in circular and noncircular microchannels[J]. Journal of Fluids Engineering, Transactions of the ASME, 2009, 131(1): 113021-113028. |
18 | Lillo G, Mastrullo R, Mauro A W, et al. Flow boiling heat transfer, dry-out vapor quality and pressure drop of propane (R290): experiments and assessment of predictive methods[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1236-1252. |
19 | Xu Y, Fang X D. A new correlation of two-phase frictional pressure drop for evaporating flow in pipes[J]. International Journal of Refrigeration, 2012, 35(7): 2039-2050. |
20 | Diani A, Mancin S, Rossetto L. R1234ze(E) flow boiling inside a 3.4 mm ID microfin tube[J]. International Journal of Refrigeration, 2014, 47: 105-119. |
21 | 刘文红, 郭烈锦, 张西民, 等. 水平直圆管内油气两相流的压降[J]. 化工学报, 2004, 55(6): 907-912. |
Liu W H, Guo L J, Zhang X M, et al. Pressure drop for oil-gas two-phase flow through straight horizontal pipe[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(6): 907-912. | |
22 | Cheng L X, Xia G D, Thome J R. Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: fundamentals, applications and engineering design[J]. Applied Thermal Engineering, 2021, 195: 117070. |
23 | Song Q L, Wang D C, Shen J, et al. Flow condensation pressure drop characteristics of zeotropic mixtures of tetrafluoromethane/ethane: experimental and analytical investigation[J]. International Journal of Heat and Mass Transfer, 2022, 182: 122045. |
24 | Li H P, Hrnjak P. Heat transfer coefficient, pressure gradient, and flow patterns of R1233zd(E) and R1336mzz(Z) evaporating in a microchannel tube[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121992. |
25 | Huang Y, Shu B F, Zhou S N, et al. Experimental investigation and prediction on pressure drop during flow boiling in horizontal microchannels[J]. Micromachines, 2021, 12(5): 510. |
26 | Feng K, Zhang H C. Pressure drop and flow pattern of gas-non-Newtonian fluid two-phase flow in a square microchannel[J]. Chemical Engineering Research and Design, 2021, 173: 158-169. |
27 | Col D D, Bortolato M, Bortolin S. Comprehensive experimental investigation of two-phase heat transfer and pressure drop with propane in a minichannel[J]. International Journal of Refrigeration, 2014, 47: 66-84. |
28 | Col D D, Bisetto A, Bortolato M, et al. Experiments and updated model for two phase frictional pressure drop inside minichannels[J]. International Journal of Heat and Mass Transfer, 2013, 67: 326-337. |
29 | de Oliveira J D, Copetti J B, Passos J C. Experimental investigation on flow boiling pressure drop of R-290 and R-600a in a horizontal small tube[J]. International Journal of Refrigeration, 2017, 84: 165-180. |
30 | Zhang W, Hibiki T, Mishima K. Correlations of two-phase frictional pressure drop and void fraction in mini-channel[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 453-465. |
31 | Wen M Y, Ho C Y. Evaporation heat transfer and pressure drop characteristics of R-290 (propane), R-600 (butane), and a mixture of R-290/R-600 in the three-lines serpentine small-tube bank[J]. Applied Thermal Engineering, 2005, 25(17/18): 2921-2936. |
32 | Yu J W, Chen J, Lu L Y, et al. Void fraction and pressure drop of hydrocarbon mixture during condensation in a helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121618. |
33 | Yang Z Q, Chen G F, Zhao Y X, et al. Experimental study on flow boiling heat transfer of a new azeotropic mixture of R1234ze(E)/R600a in a horizontal tube[J]. International Journal of Refrigeration, 2018, 93: 224-235. |
34 | 杨志强, 公茂琼, 陈高飞, 等. R600a水平管内两相流型转换及摩擦压降特性[J]. 科学通报, 2018, 63(1): 98-107. |
Yang Z Q, Gong M Q, Chen G F, et al. Experiment investigation of two-phase flow pattern transition and frictional pressure drop of R600a in a horizontal tube[J]. Chinese Science Bulletin, 2018, 63(1): 98-107. | |
35 | Rouhani S Z, Axelsson E. Calculation of void volume fraction in the subcooled and quality boiling regions[J]. International Journal of Heat and Mass Transfer, 1970, 13(2): 383-393. |
36 | Lemmon E, Huber M, Refprop Mclinden M., NIST standard reference database 23, v. 9.1[DB]. Gaithersburg, MD, USA: National Institute of Standards, 2013. |
37 | Collier J G, Thome J R. Convective Boiling and Condensation[M]. 3rd ed. USA: Oxford University Press, 1994: 12-15. |
38 | Xue H W, Shen J, Zhao Y X, et al. Experimental study on boiling flow patterns of the zeotropic mixtures of R290/R600a in a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123268. |
39 | Chen I Y, Yang K S, Chang Y J, et al. Two-phase pressure drop of air-water and R-410A in small horizontal tubes[J]. International Journal of Multiphase Flow, 2001, 27(7): 1293-1299. |
40 | Padilla M, Revellin R, Haberschill P, et al. Flow regimes and two-phase pressure gradient in horizontal straight tubes: experimental results for HFO-1234yf, R-134a and R-410A[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1113-1126. |
41 | 姜林林, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾压降特性[J]. 化工学报, 2017, 68(12): 4576-4584. |
Jiang L L, Liu J H, Zhang L, et al. Flow boiling pressure drop characteristics of CO2 in horizontal micro tube[J]. CIESC Journal, 2017, 68(12): 4576-4584. | |
42 | Xu Y, Fang X D. A new correlation of two-phase frictional pressure drop for condensing flow in pipes[J]. Nuclear Engineering and Design, 2013, 263: 87-96. |
43 | 陈冲, 高璞珍, 余志庭, 等. 摇摆工况下窄矩形通道内两相沸腾摩擦压降特性[J]. 化工学报, 2015, 66(10): 3874-3880. |
Chen C, Gao P Z, Yu Z T, et al. Two-phase frictional pressure drop characteristics of boiling flow in rectangular narrow channel under rolling motion[J]. CIESC Journal, 2015, 66(10): 3874-3880. | |
44 | Mcadams W. Vaporization inside horizontal tubes(Ⅱ): Benzene oil mixtures[J]. Trans. ASME, 1942, 64: 193-200. |
45 | Davidson W F, Hardie P H, Humphreys C, et al. Studies of heat transmission through boiler tubing at pressures from 500 to 3300 pounds[J]. Trans. ASME, 1943, 65: 553-591. |
46 | Beattie D R H, Whalley P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1): 83-87. |
47 | Awad M M, Muzychka Y S. Effective property models for homogeneous two-phase flows[J]. Experimental Thermal and Fluid Science, 2008, 33(1): 106-113. |
48 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
49 | Grönnerud R. Investigation in Liquid Holdup. Flow Resistance and Heat Transfer in Circular Type Evaporators (part Ⅳ): Two-phase Resistance in Boiling Refrigerants[M]. Du Froid, Annexe: Bulletin de l’Hnst, 1979: 1972-1981. |
50 | Yan Y Y, Lio H C, Lin T F. Condensation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger[J]. International Journal of Heat and Mass Transfer, 1999, 42(6): 993-1006. |
51 | Kim S M, Mudawar I. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2014, 77(4): 627-652. |
52 | Jige D, Inoue N, Koyama S. Condensation of refrigerants in a multiport tube with rectangular minichannels[J]. International Journal of Refrigeration, 2016, 67: 202-213. |
53 | Yang Z Q, Gong M Q, Chen G F, et al. Two-phase flow patterns, heat transfer and pressure drop characteristics of R600a during flow boiling inside a horizontal tube[J]. Applied Thermal Engineering, 2017, 120: 654-671. |
54 | Song Q L, Chen G F, Guo H, et al. Two-phase flow condensation pressure drop of R14 in a horizontal tube: experimental investigation and correlation development[J]. International Journal of Heat and Mass Transfer, 2019, 139: 330-342. |
55 | Whalley P B. Boiling, Condensation, and Gas-liquid Flow[M]. USA: Oxford University Press, 1987: 38-39. |
56 | Filho E P B, Jabardo J M S, Barbieri P E L. Convective boiling pressure drop of refrigerant R-134a in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2004, 27(8): 895-903. |
57 | Xu Y, Fang X D, Li D K, et al. An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations[J]. International Journal of Heat and Mass Transfer, 2016, 98: 150-163. |
58 | Wang Y X, Shen S Q, Yuan D Y. Frictional pressure drop during steam stratified condensation flow in vacuum horizontal tube[J]. International Journal of Heat and Mass Transfer, 2017, 115: 979-990. |
59 | Yang Z Q, Chen G F, Yao Y, et al. Experimental study on flow boiling heat transfer and pressure drop in a horizontal tube for R1234ze(E) versus R600a[J]. International Journal of Refrigeration, 2018, 85: 334-352. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Xi WU, Zudi OU, Xinjie ZHANG, Shiming XU, Xiaojing ZHU. Experimental study on the flammability of HFO-1243zf [J]. CIESC Journal, 2023, 74(S1): 346-352. |
[4] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[5] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[6] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[7] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[8] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[9] | Yingying TAN, Xiaoqing LIU, Lin WANG, Lisheng HUANG, Xiuzhen LI, Zhanwei WANG. Experimental study on startup dynamic characteristics of R1150/R600a auto-cascade refrigeration cycle [J]. CIESC Journal, 2023, 74(S1): 213-222. |
[10] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[11] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[12] | Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method [J]. CIESC Journal, 2023, 74(9): 3855-3864. |
[13] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[14] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[15] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||